通过高维性状的多变量潜在因子分析提高遗传发现和精细定位分辨率。

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2025-05-14 Epub Date: 2025-04-11 DOI:10.1016/j.xgen.2025.100847
Feng Zhou, William J Astle, Adam S Butterworth, Jennifer L Asimit
{"title":"通过高维性状的多变量潜在因子分析提高遗传发现和精细定位分辨率。","authors":"Feng Zhou, William J Astle, Adam S Butterworth, Jennifer L Asimit","doi":"10.1016/j.xgen.2025.100847","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWASs) of high-dimensional traits, such as blood cell or metabolic traits, often use univariate approaches, ignoring trait relationships. Biological mechanisms generating variation in high-dimensional traits can be captured parsimoniously through a GWAS of latent factors. Here, we introduce flashfmZero, a zero-correlation latent-factor-based multi-trait fine-mapping approach. In an application to 25 latent factors derived from 99 blood cell traits in the INTERVAL cohort, we show that latent factor GWASs enable the detection of signals generating sub-threshold associations with several blood cell traits. The 99% credible sets (CS99) from flashfmZero were equal to or smaller in size than those from univariate fine-mapping of blood cell traits in 87% of our comparisons. In all cases univariate latent factor CS99 contained those from flashfmZero. Our latent factor approaches can be applied to GWAS summary statistics and will enhance power for the discovery and fine-mapping of associations for many traits.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100847"},"PeriodicalIF":11.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved genetic discovery and fine-mapping resolution through multivariate latent factor analysis of high-dimensional traits.\",\"authors\":\"Feng Zhou, William J Astle, Adam S Butterworth, Jennifer L Asimit\",\"doi\":\"10.1016/j.xgen.2025.100847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-wide association studies (GWASs) of high-dimensional traits, such as blood cell or metabolic traits, often use univariate approaches, ignoring trait relationships. Biological mechanisms generating variation in high-dimensional traits can be captured parsimoniously through a GWAS of latent factors. Here, we introduce flashfmZero, a zero-correlation latent-factor-based multi-trait fine-mapping approach. In an application to 25 latent factors derived from 99 blood cell traits in the INTERVAL cohort, we show that latent factor GWASs enable the detection of signals generating sub-threshold associations with several blood cell traits. The 99% credible sets (CS99) from flashfmZero were equal to or smaller in size than those from univariate fine-mapping of blood cell traits in 87% of our comparisons. In all cases univariate latent factor CS99 contained those from flashfmZero. Our latent factor approaches can be applied to GWAS summary statistics and will enhance power for the discovery and fine-mapping of associations for many traits.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100847\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高维性状(如血细胞或代谢性状)的全基因组关联研究(GWASs)通常使用单变量方法,忽略了性状之间的关系。产生高维性状变异的生物学机制可以通过潜在因素的GWAS来简单地捕获。在这里,我们介绍flashfmZero,一种基于零相关潜在因子的多性状精细映射方法。在对INTERVAL队列中来自99个血细胞性状的25个潜在因子的应用中,我们表明潜在因子GWASs能够检测与几个血细胞性状产生亚阈值关联的信号。在87%的比较中,flashfmZero的99%可信集(CS99)等于或小于单变量精细定位的血细胞特征集。在所有病例中,单变量潜在因子CS99都含有来自flashfmZero的潜在因子。我们的潜在因素方法可以应用于GWAS的汇总统计,并将增强发现和精细绘制许多特征的关联的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved genetic discovery and fine-mapping resolution through multivariate latent factor analysis of high-dimensional traits.

Genome-wide association studies (GWASs) of high-dimensional traits, such as blood cell or metabolic traits, often use univariate approaches, ignoring trait relationships. Biological mechanisms generating variation in high-dimensional traits can be captured parsimoniously through a GWAS of latent factors. Here, we introduce flashfmZero, a zero-correlation latent-factor-based multi-trait fine-mapping approach. In an application to 25 latent factors derived from 99 blood cell traits in the INTERVAL cohort, we show that latent factor GWASs enable the detection of signals generating sub-threshold associations with several blood cell traits. The 99% credible sets (CS99) from flashfmZero were equal to or smaller in size than those from univariate fine-mapping of blood cell traits in 87% of our comparisons. In all cases univariate latent factor CS99 contained those from flashfmZero. Our latent factor approaches can be applied to GWAS summary statistics and will enhance power for the discovery and fine-mapping of associations for many traits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信