通过表征β-羟基丁酸结合蛋白的代谢物相互作用和定点诱变,扩大其生物分析应用。

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2025-05-01 DOI:10.1002/pro.70129
Bryant J Kane, Kyle V Murphy, Koji Sode
{"title":"通过表征β-羟基丁酸结合蛋白的代谢物相互作用和定点诱变,扩大其生物分析应用。","authors":"Bryant J Kane, Kyle V Murphy, Koji Sode","doi":"10.1002/pro.70129","DOIUrl":null,"url":null,"abstract":"<p><p>β-hydroxybutyrate binding proteins (BHBBPs) are a newly identified group of periplasmic solute-binding proteins (SBPs) that interact with β-hydroxybutyrate (BHB), a key physiological metabolite. In this study, we systematically characterized the interaction properties of both previously reported and newly identified BHBBPs, including \"NovoS\" and \"EDC10\" from Gram-negative bacteria. Following recombinant production, we assessed the specificity and affinity of these proteins against a library of 23 different metabolites using a label-free derivative of differential scanning fluorimetry (nanoDSF). Positive interactions were further evaluated for their binding affinity via tryptophan fluorescence spectroscopy, which confirmed D/L-BHB as the preferred ligand for all proteins, with slight enantioselectivity. BHBBPs also exhibited binding to other compounds such as acetoacetate, D/L-α-hydroxybutyrate, L-lactate, and pyruvate, albeit with reduced affinity. These findings expand the classification of BHBBPs, suggesting that similar proteins and associated transporters may be widespread in prokaryotes involved in the carbon cycle of polyhydroxybutyrate. Guided by the crystal structure of the homologous BMA2936 protein, we introduced targeted point mutations in conserved polar residues of the BHBBPs EDC24 and NovoS. It was determined through this experimental pipeline that their affinity towards BHB was reduced by a factor between 25 and 750, shifting their binding constants towards the millimolar range. Collectively, the affinities of both wild-type and mutant proteins span 4 orders of magnitude, from nanomolar to millimolar recognition of BHB. Leveraging the versatility of SBP-based biosensing, these receptors and their wide affinity range could facilitate the development of effective bioanalytical tools for BHB detection in diverse physiological environments.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 5","pages":"e70129"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012846/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expanding the bioanalytical application of β-hydroxybutyrate binding proteins through characterization of their metabolite interactions and site-directed mutagenesis.\",\"authors\":\"Bryant J Kane, Kyle V Murphy, Koji Sode\",\"doi\":\"10.1002/pro.70129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-hydroxybutyrate binding proteins (BHBBPs) are a newly identified group of periplasmic solute-binding proteins (SBPs) that interact with β-hydroxybutyrate (BHB), a key physiological metabolite. In this study, we systematically characterized the interaction properties of both previously reported and newly identified BHBBPs, including \\\"NovoS\\\" and \\\"EDC10\\\" from Gram-negative bacteria. Following recombinant production, we assessed the specificity and affinity of these proteins against a library of 23 different metabolites using a label-free derivative of differential scanning fluorimetry (nanoDSF). Positive interactions were further evaluated for their binding affinity via tryptophan fluorescence spectroscopy, which confirmed D/L-BHB as the preferred ligand for all proteins, with slight enantioselectivity. BHBBPs also exhibited binding to other compounds such as acetoacetate, D/L-α-hydroxybutyrate, L-lactate, and pyruvate, albeit with reduced affinity. These findings expand the classification of BHBBPs, suggesting that similar proteins and associated transporters may be widespread in prokaryotes involved in the carbon cycle of polyhydroxybutyrate. Guided by the crystal structure of the homologous BMA2936 protein, we introduced targeted point mutations in conserved polar residues of the BHBBPs EDC24 and NovoS. It was determined through this experimental pipeline that their affinity towards BHB was reduced by a factor between 25 and 750, shifting their binding constants towards the millimolar range. Collectively, the affinities of both wild-type and mutant proteins span 4 orders of magnitude, from nanomolar to millimolar recognition of BHB. Leveraging the versatility of SBP-based biosensing, these receptors and their wide affinity range could facilitate the development of effective bioanalytical tools for BHB detection in diverse physiological environments.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 5\",\"pages\":\"e70129\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012846/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70129\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70129","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

β-羟基丁酸结合蛋白(BHBBPs)是一类新发现的与β-羟基丁酸(BHB)相互作用的质周溶质结合蛋白(sbp)。在这项研究中,我们系统地表征了以前报道的和新发现的BHBBPs的相互作用特性,包括来自革兰氏阴性菌的“NovoS”和“EDC10”。在重组生产之后,我们使用无标记的差示扫描荧光法衍生物(nanoDSF)评估了这些蛋白对23种不同代谢物库的特异性和亲和力。通过色氨酸荧光光谱进一步评估了它们的结合亲和力,证实D/L-BHB是所有蛋白质的首选配体,具有轻微的对映体选择性。BHBBPs也与其他化合物如醋酸酯、D/L-α-羟基丁酸盐、L-乳酸盐和丙酮酸盐结合,尽管亲和力降低。这些发现扩大了BHBBPs的分类,表明类似的蛋白质和相关的转运蛋白可能广泛存在于参与聚羟基丁酸碳循环的原核生物中。在同源BMA2936蛋白晶体结构的指导下,我们在BHBBPs的EDC24和NovoS的保守极性残基上引入了靶向点突变。通过这个实验管道确定,它们对BHB的亲和力降低了25到750倍,使它们的结合常数向毫摩尔范围移动。总的来说,野生型和突变型蛋白的亲和力跨越4个数量级,从纳摩尔到毫摩尔对BHB的识别。利用基于sbp的生物传感的多功能性,这些受体及其广泛的亲和力范围可以促进在不同生理环境中检测BHB的有效生物分析工具的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expanding the bioanalytical application of β-hydroxybutyrate binding proteins through characterization of their metabolite interactions and site-directed mutagenesis.

β-hydroxybutyrate binding proteins (BHBBPs) are a newly identified group of periplasmic solute-binding proteins (SBPs) that interact with β-hydroxybutyrate (BHB), a key physiological metabolite. In this study, we systematically characterized the interaction properties of both previously reported and newly identified BHBBPs, including "NovoS" and "EDC10" from Gram-negative bacteria. Following recombinant production, we assessed the specificity and affinity of these proteins against a library of 23 different metabolites using a label-free derivative of differential scanning fluorimetry (nanoDSF). Positive interactions were further evaluated for their binding affinity via tryptophan fluorescence spectroscopy, which confirmed D/L-BHB as the preferred ligand for all proteins, with slight enantioselectivity. BHBBPs also exhibited binding to other compounds such as acetoacetate, D/L-α-hydroxybutyrate, L-lactate, and pyruvate, albeit with reduced affinity. These findings expand the classification of BHBBPs, suggesting that similar proteins and associated transporters may be widespread in prokaryotes involved in the carbon cycle of polyhydroxybutyrate. Guided by the crystal structure of the homologous BMA2936 protein, we introduced targeted point mutations in conserved polar residues of the BHBBPs EDC24 and NovoS. It was determined through this experimental pipeline that their affinity towards BHB was reduced by a factor between 25 and 750, shifting their binding constants towards the millimolar range. Collectively, the affinities of both wild-type and mutant proteins span 4 orders of magnitude, from nanomolar to millimolar recognition of BHB. Leveraging the versatility of SBP-based biosensing, these receptors and their wide affinity range could facilitate the development of effective bioanalytical tools for BHB detection in diverse physiological environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信