Aline L Takejima, Rossana B Simeoni, Milka L Takejima, Angela G Lemke, Seigo Nagashima, Anna C F Silva, Julio C Francisco, Ricardo A Pinho, Lúcia de Noronha, Luiz C Guarita-Souza
{"title":"脱细胞羊膜及华氏胶对实验性皮肤创面愈合的影响。","authors":"Aline L Takejima, Rossana B Simeoni, Milka L Takejima, Angela G Lemke, Seigo Nagashima, Anna C F Silva, Julio C Francisco, Ricardo A Pinho, Lúcia de Noronha, Luiz C Guarita-Souza","doi":"10.1080/21688370.2025.2497101","DOIUrl":null,"url":null,"abstract":"<p><p>Several studies have focused on novel therapeutic strategies for extensive skin lesions aiming to improve healing quality and reduce treatment duration. In this context, the use of amniotic membrane (AM) and Wharton's jelly (WJ) emerges as promising alternatives. Full-thickness dorsal skin wounds were created in 21 Wistar rats, randomly divided into three groups: control (C), AM - covered by AM and WJ - covered by WJ. Wound contraction rate was measured weekly. On day 28, histochemical (Picrosirius red) and immunohistochemical analyses matrix metalloproteinase-9 (MMP-9), transforming growth factor beta (TGF-β), and alpha-smooth muscle actin (α-SMA) were performed. On day seven, wound contraction rate was higher in the AM group (38.8%), followed by the WJ (27.4%) and control (26.5%) with statistically significance. During the first 14 days, the AM group maintained the highest contraction rate, followed by the control and WJ groups. However, by day 21, wound contraction rates increased in the order of WJ to AM to control groups (85.6%, 87.0%, and 91.1%) with statistically significance. Type I collagen predominated across all groups, without statistically significant differences among them. TGF-β expression significantly increased from WJ to AM to control groups (19.75%, 26.00%, and 36.56%) with statistically significance. MMP-9 and α-SMA expressions decreased from control to WJ to AM groups, but no significant differences were observed. Both AM and WJ enhanced early wound contraction and may support skin repair by attenuating fibrotic signaling. These findings highlight the potential of AM and WJ as biomaterials for promoting tissue regeneration at epithelial barriers.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":" ","pages":"2497101"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of decellularized amniotic membrane and Wharton's jelly on the healing of experimental skin wounds in rats.\",\"authors\":\"Aline L Takejima, Rossana B Simeoni, Milka L Takejima, Angela G Lemke, Seigo Nagashima, Anna C F Silva, Julio C Francisco, Ricardo A Pinho, Lúcia de Noronha, Luiz C Guarita-Souza\",\"doi\":\"10.1080/21688370.2025.2497101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several studies have focused on novel therapeutic strategies for extensive skin lesions aiming to improve healing quality and reduce treatment duration. In this context, the use of amniotic membrane (AM) and Wharton's jelly (WJ) emerges as promising alternatives. Full-thickness dorsal skin wounds were created in 21 Wistar rats, randomly divided into three groups: control (C), AM - covered by AM and WJ - covered by WJ. Wound contraction rate was measured weekly. On day 28, histochemical (Picrosirius red) and immunohistochemical analyses matrix metalloproteinase-9 (MMP-9), transforming growth factor beta (TGF-β), and alpha-smooth muscle actin (α-SMA) were performed. On day seven, wound contraction rate was higher in the AM group (38.8%), followed by the WJ (27.4%) and control (26.5%) with statistically significance. During the first 14 days, the AM group maintained the highest contraction rate, followed by the control and WJ groups. However, by day 21, wound contraction rates increased in the order of WJ to AM to control groups (85.6%, 87.0%, and 91.1%) with statistically significance. Type I collagen predominated across all groups, without statistically significant differences among them. TGF-β expression significantly increased from WJ to AM to control groups (19.75%, 26.00%, and 36.56%) with statistically significance. MMP-9 and α-SMA expressions decreased from control to WJ to AM groups, but no significant differences were observed. Both AM and WJ enhanced early wound contraction and may support skin repair by attenuating fibrotic signaling. These findings highlight the potential of AM and WJ as biomaterials for promoting tissue regeneration at epithelial barriers.</p>\",\"PeriodicalId\":23469,\"journal\":{\"name\":\"Tissue Barriers\",\"volume\":\" \",\"pages\":\"2497101\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue Barriers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21688370.2025.2497101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2025.2497101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
The effects of decellularized amniotic membrane and Wharton's jelly on the healing of experimental skin wounds in rats.
Several studies have focused on novel therapeutic strategies for extensive skin lesions aiming to improve healing quality and reduce treatment duration. In this context, the use of amniotic membrane (AM) and Wharton's jelly (WJ) emerges as promising alternatives. Full-thickness dorsal skin wounds were created in 21 Wistar rats, randomly divided into three groups: control (C), AM - covered by AM and WJ - covered by WJ. Wound contraction rate was measured weekly. On day 28, histochemical (Picrosirius red) and immunohistochemical analyses matrix metalloproteinase-9 (MMP-9), transforming growth factor beta (TGF-β), and alpha-smooth muscle actin (α-SMA) were performed. On day seven, wound contraction rate was higher in the AM group (38.8%), followed by the WJ (27.4%) and control (26.5%) with statistically significance. During the first 14 days, the AM group maintained the highest contraction rate, followed by the control and WJ groups. However, by day 21, wound contraction rates increased in the order of WJ to AM to control groups (85.6%, 87.0%, and 91.1%) with statistically significance. Type I collagen predominated across all groups, without statistically significant differences among them. TGF-β expression significantly increased from WJ to AM to control groups (19.75%, 26.00%, and 36.56%) with statistically significance. MMP-9 and α-SMA expressions decreased from control to WJ to AM groups, but no significant differences were observed. Both AM and WJ enhanced early wound contraction and may support skin repair by attenuating fibrotic signaling. These findings highlight the potential of AM and WJ as biomaterials for promoting tissue regeneration at epithelial barriers.
期刊介绍:
Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.