离体人脑在微米分辨率下的三维纤维定向映射。

npj Imaging Pub Date : 2025-01-01 Epub Date: 2025-04-08 DOI:10.1038/s44303-025-00074-2
Chao J Liu, William Ammon, Robert J Jones, Jackson C Nolan, Dayang Gong, Chiara Maffei, Nathan Blanke, Brian L Edlow, Jean C Augustinack, Caroline Magnain, Anastasia Yendiki, Martin Villiger, Bruce Fischl, Hui Wang
{"title":"离体人脑在微米分辨率下的三维纤维定向映射。","authors":"Chao J Liu, William Ammon, Robert J Jones, Jackson C Nolan, Dayang Gong, Chiara Maffei, Nathan Blanke, Brian L Edlow, Jean C Augustinack, Caroline Magnain, Anastasia Yendiki, Martin Villiger, Bruce Fischl, Hui Wang","doi":"10.1038/s44303-025-00074-2","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Comprehensive reconstruction of axonal tracts and small fascicles requires high-resolution technology beyond the ability of current in vivo imaging (e.g., diffusion magnetic resonance imaging). Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) can quantify fiber orientation at micrometer resolution but have been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D. In this work we present a novel method to quantify volumetric 3D orientation in full angular space with PS-OCT in postmortem human brain tissues. We measure the polarization contrasts of the brain sample from two illumination angles of 0 and 15° and apply a computational method that yields the 3D optic axis orientation and true birefringence. We further present 3D fiber orientation maps of entire coronal cerebrum sections and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain as well as other complex fibrous tissues at microscopic level.</p>","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":"3 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978517/pdf/","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional fiber orientation mapping of ex vivo human brain at micrometer resolution.\",\"authors\":\"Chao J Liu, William Ammon, Robert J Jones, Jackson C Nolan, Dayang Gong, Chiara Maffei, Nathan Blanke, Brian L Edlow, Jean C Augustinack, Caroline Magnain, Anastasia Yendiki, Martin Villiger, Bruce Fischl, Hui Wang\",\"doi\":\"10.1038/s44303-025-00074-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Comprehensive reconstruction of axonal tracts and small fascicles requires high-resolution technology beyond the ability of current in vivo imaging (e.g., diffusion magnetic resonance imaging). Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) can quantify fiber orientation at micrometer resolution but have been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D. In this work we present a novel method to quantify volumetric 3D orientation in full angular space with PS-OCT in postmortem human brain tissues. We measure the polarization contrasts of the brain sample from two illumination angles of 0 and 15° and apply a computational method that yields the 3D optic axis orientation and true birefringence. We further present 3D fiber orientation maps of entire coronal cerebrum sections and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain as well as other complex fibrous tissues at microscopic level.</p>\",\"PeriodicalId\":501709,\"journal\":{\"name\":\"npj Imaging\",\"volume\":\"3 1\",\"pages\":\"13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978517/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44303-025-00074-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44303-025-00074-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精确测量大脑中三维(3D)纤维的方向对于重建纤维通路和研究它们在神经系统疾病中的作用至关重要。轴突束和小束的全面重建需要高分辨率技术,这超出了当前体内成像(如扩散磁共振成像)的能力。偏振敏感光学相干层析成像(PS-OCT)等光学成像方法可以在微米分辨率下量化光纤的方向,但仅限于二维平面内方向,无法在三维上对连通性进行全面研究。在这项工作中,我们提出了一种新的方法,用PS-OCT在死后人脑组织的全角空间中量化体积三维方向。我们从0°和15°两个照明角度测量大脑样本的偏振对比,并应用计算方法产生3D光轴方向和真正的双折射。我们进一步以10 μm的平面分辨率绘制了整个大脑冠状区和脑干的三维纤维定向图,揭示了纤维结构的前所未有的细节。我们设想,我们的方法将为人类大脑以及其他复杂纤维组织在微观水平上的大规模3D纤维轴映射开辟一条有希望的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three-dimensional fiber orientation mapping of ex vivo human brain at micrometer resolution.

The accurate measurement of three-dimensional (3D) fiber orientation in the brain is crucial for reconstructing fiber pathways and studying their involvement in neurological diseases. Comprehensive reconstruction of axonal tracts and small fascicles requires high-resolution technology beyond the ability of current in vivo imaging (e.g., diffusion magnetic resonance imaging). Optical imaging methods such as polarization-sensitive optical coherence tomography (PS-OCT) can quantify fiber orientation at micrometer resolution but have been limited to two-dimensional in-plane orientation, preventing the comprehensive study of connectivity in 3D. In this work we present a novel method to quantify volumetric 3D orientation in full angular space with PS-OCT in postmortem human brain tissues. We measure the polarization contrasts of the brain sample from two illumination angles of 0 and 15° and apply a computational method that yields the 3D optic axis orientation and true birefringence. We further present 3D fiber orientation maps of entire coronal cerebrum sections and brainstem with 10 μm in-plane resolution, revealing unprecedented details of fiber configurations. We envision that our method will open a promising avenue towards large-scale 3D fiber axis mapping in the human brain as well as other complex fibrous tissues at microscopic level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信