先进可穿戴和植入式生物医学应用的合格压电装置和系统。

IF 12.8 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Jin-Hoon Kim, Hyeokjun Yoon, Shrihari Viswanath, Canan Dagdeviren
{"title":"先进可穿戴和植入式生物医学应用的合格压电装置和系统。","authors":"Jin-Hoon Kim, Hyeokjun Yoon, Shrihari Viswanath, Canan Dagdeviren","doi":"10.1146/annurev-bioeng-020524-121438","DOIUrl":null,"url":null,"abstract":"<p><p>With increasing demands for continuous health monitoring remotely, wearable and implantable devices have attracted considerable interest. To fulfill such demands, novel materials and device structures have been investigated, since commercial biomedical devices are not compatible with flexible and conformable form factors needed for soft tissue monitoring and intervention. Among various materials, piezoelectric materials have been widely adopted for multiple applications including sensing, energy harvesting, neurostimulation, drug delivery, and ultrasound imaging owing to their unique electromechanical conversion properties. In this review, we provide a comprehensive overview of piezoelectric-based wearable and implantable biomedical devices. We first provide the basic principles of piezoelectric devices and device design strategies for wearable and implantable form factors. Then, we discuss various state-of-the-art applications of wearable and implantable piezoelectric devices and their design strategies. Finally, we demonstrate several challenges and outlooks for designing piezoelectric-based conformable biomedical devices.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"27 1","pages":"255-282"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformable Piezoelectric Devices and Systems for Advanced Wearable and Implantable Biomedical Applications.\",\"authors\":\"Jin-Hoon Kim, Hyeokjun Yoon, Shrihari Viswanath, Canan Dagdeviren\",\"doi\":\"10.1146/annurev-bioeng-020524-121438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With increasing demands for continuous health monitoring remotely, wearable and implantable devices have attracted considerable interest. To fulfill such demands, novel materials and device structures have been investigated, since commercial biomedical devices are not compatible with flexible and conformable form factors needed for soft tissue monitoring and intervention. Among various materials, piezoelectric materials have been widely adopted for multiple applications including sensing, energy harvesting, neurostimulation, drug delivery, and ultrasound imaging owing to their unique electromechanical conversion properties. In this review, we provide a comprehensive overview of piezoelectric-based wearable and implantable biomedical devices. We first provide the basic principles of piezoelectric devices and device design strategies for wearable and implantable form factors. Then, we discuss various state-of-the-art applications of wearable and implantable piezoelectric devices and their design strategies. Finally, we demonstrate several challenges and outlooks for designing piezoelectric-based conformable biomedical devices.</p>\",\"PeriodicalId\":50757,\"journal\":{\"name\":\"Annual Review of Biomedical Engineering\",\"volume\":\"27 1\",\"pages\":\"255-282\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-bioeng-020524-121438\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-020524-121438","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着对远程持续健康监测的需求不断增加,可穿戴和植入式设备引起了人们的极大兴趣。为了满足这些需求,人们研究了新的材料和设备结构,因为商业生物医学设备与软组织监测和干预所需的灵活和一致的形状因素不兼容。在众多的材料中,压电材料由于其独特的机电转换特性,被广泛应用于传感、能量收集、神经刺激、药物传递和超声成像等多个领域。在这篇综述中,我们提供了基于压电的可穿戴和植入式生物医学设备的全面概述。我们首先提供了压电器件的基本原理以及可穿戴和可植入外形因素的器件设计策略。然后,我们讨论了可穿戴和可植入压电器件的各种最新应用及其设计策略。最后,我们展示了设计基于压电的可适应生物医学设备的几个挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformable Piezoelectric Devices and Systems for Advanced Wearable and Implantable Biomedical Applications.

With increasing demands for continuous health monitoring remotely, wearable and implantable devices have attracted considerable interest. To fulfill such demands, novel materials and device structures have been investigated, since commercial biomedical devices are not compatible with flexible and conformable form factors needed for soft tissue monitoring and intervention. Among various materials, piezoelectric materials have been widely adopted for multiple applications including sensing, energy harvesting, neurostimulation, drug delivery, and ultrasound imaging owing to their unique electromechanical conversion properties. In this review, we provide a comprehensive overview of piezoelectric-based wearable and implantable biomedical devices. We first provide the basic principles of piezoelectric devices and device design strategies for wearable and implantable form factors. Then, we discuss various state-of-the-art applications of wearable and implantable piezoelectric devices and their design strategies. Finally, we demonstrate several challenges and outlooks for designing piezoelectric-based conformable biomedical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Biomedical Engineering
Annual Review of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
18.80
自引率
0.00%
发文量
14
期刊介绍: Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信