多参数FDG-PET/MRI分析真的能增强对CTO血运重建术后心肌恢复的预测吗?机器学习研究。

Alberto Villagran Asiares, Teresa Vitadello, Osvaldo M Velarde, Sylvia Schachoff, Tareq Ibrahim, Stephan G Nekolla
{"title":"多参数FDG-PET/MRI分析真的能增强对CTO血运重建术后心肌恢复的预测吗?机器学习研究。","authors":"Alberto Villagran Asiares, Teresa Vitadello, Osvaldo M Velarde, Sylvia Schachoff, Tareq Ibrahim, Stephan G Nekolla","doi":"10.1016/j.zemedi.2025.03.003","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To comprehensively evaluate the effectiveness of FDG-PET/MRI multiparametric analysis in predicting myocardial wall motion recovery following revascularization of chronic coronary total occlusions (CTO), incorporating both traditional and machine learning approaches.</p><p><strong>Methods: </strong>This retrospective study assessed fluorine-18 fluorodeoxyglucose uptake (FDG), late gadolinium enhanced MR imaging (LGE), and MR wall motion abnormalities (WMA) of the left ventricle walls of a clinical cohort with 21 CTO patients (62 ± 9 years, 20 men). All patients were examined using a PET/MRI prior to revascularization and a follow-up cardiac MRI six months later. Prediction models for wall motion recovery after perfusion restoration were developed using linear and nonlinear algorithms as well as multiparametric variables. Performance and prediction explainability were evaluated in a 5x2 cross-validation framework, using ROC AUC and McNemar's test modified for clustered matched-pair data, and Shapley values.</p><p><strong>Results: </strong>Based on 79 CTO-subtended myocardial wall segments with wall motion abnormalities at baseline, the reference logistic regression model LGE + FDG obtained 0.55(SE = 0.07) in the clustered ROC AUC (cROC AUC) and 0.17(0.05) in the Global Absolute Shapley value. The reference outperformed FDG standalone in cROC AUC (-35(17) %, p < 0.0001), but not LGE standalone (11(12) %, p > 0.05). There were no statistically significant differences between the marginal probabilities of success of these three models. Moreover, no significant improvements (differences < 10 % in cROC AUC, and < 20 % in Global Absolute Shapley, p > 0.05) were found when using mixed effects logistic regression, decision tree, k-nearest neighbor, Naive Bayes, random forest, and support vector machine, with multiparametric combinations of FDG, LGE, and/or WMA.</p><p><strong>Conclusion: </strong>In this clinical cohort, adding more complex interactions between PET/MRI imaging of cardiac function, infarct extension, and/or metabolism did not enhance the prediction of wall motion recovery after perfusion restoration. This finding raises the question whether multiparametric FDG-PET/MRI analysis has demonstrable benefits in risk stratification for CTO revascularization. Further studies with larger cohorts and external validation datasets are crucial to clarify this question and refine the role of multiparametric imaging in this context.</p>","PeriodicalId":101315,"journal":{"name":"Zeitschrift fur medizinische Physik","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can multiparametric FDG-PET/MRI analysis really enhance the prediction of myocardial recovery after CTO revascularization? A machine learning study.\",\"authors\":\"Alberto Villagran Asiares, Teresa Vitadello, Osvaldo M Velarde, Sylvia Schachoff, Tareq Ibrahim, Stephan G Nekolla\",\"doi\":\"10.1016/j.zemedi.2025.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To comprehensively evaluate the effectiveness of FDG-PET/MRI multiparametric analysis in predicting myocardial wall motion recovery following revascularization of chronic coronary total occlusions (CTO), incorporating both traditional and machine learning approaches.</p><p><strong>Methods: </strong>This retrospective study assessed fluorine-18 fluorodeoxyglucose uptake (FDG), late gadolinium enhanced MR imaging (LGE), and MR wall motion abnormalities (WMA) of the left ventricle walls of a clinical cohort with 21 CTO patients (62 ± 9 years, 20 men). All patients were examined using a PET/MRI prior to revascularization and a follow-up cardiac MRI six months later. Prediction models for wall motion recovery after perfusion restoration were developed using linear and nonlinear algorithms as well as multiparametric variables. Performance and prediction explainability were evaluated in a 5x2 cross-validation framework, using ROC AUC and McNemar's test modified for clustered matched-pair data, and Shapley values.</p><p><strong>Results: </strong>Based on 79 CTO-subtended myocardial wall segments with wall motion abnormalities at baseline, the reference logistic regression model LGE + FDG obtained 0.55(SE = 0.07) in the clustered ROC AUC (cROC AUC) and 0.17(0.05) in the Global Absolute Shapley value. The reference outperformed FDG standalone in cROC AUC (-35(17) %, p < 0.0001), but not LGE standalone (11(12) %, p > 0.05). There were no statistically significant differences between the marginal probabilities of success of these three models. Moreover, no significant improvements (differences < 10 % in cROC AUC, and < 20 % in Global Absolute Shapley, p > 0.05) were found when using mixed effects logistic regression, decision tree, k-nearest neighbor, Naive Bayes, random forest, and support vector machine, with multiparametric combinations of FDG, LGE, and/or WMA.</p><p><strong>Conclusion: </strong>In this clinical cohort, adding more complex interactions between PET/MRI imaging of cardiac function, infarct extension, and/or metabolism did not enhance the prediction of wall motion recovery after perfusion restoration. This finding raises the question whether multiparametric FDG-PET/MRI analysis has demonstrable benefits in risk stratification for CTO revascularization. Further studies with larger cohorts and external validation datasets are crucial to clarify this question and refine the role of multiparametric imaging in this context.</p>\",\"PeriodicalId\":101315,\"journal\":{\"name\":\"Zeitschrift fur medizinische Physik\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur medizinische Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.zemedi.2025.03.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur medizinische Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.zemedi.2025.03.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:综合评价FDG-PET/MRI多参数分析预测慢性冠状动脉全闭塞(CTO)血运重建术后心肌壁运动恢复的有效性,结合传统方法和机器学习方法。方法:本回顾性研究评估了21例CTO患者(62例 ± 9岁,20例男性)的氟-18氟脱氧葡萄糖摄取(FDG)、晚期钆增强MR成像(LGE)和左心室壁MR运动异常(WMA)。所有患者在血运重建术前进行PET/MRI检查,6个月后进行随访心脏MRI检查。利用线性和非线性算法以及多参数变量建立了灌注恢复后壁面运动恢复的预测模型。在5x2交叉验证框架中评估性能和预测可解释性,使用ROC AUC和针对聚类匹配对数据修改的McNemar检验,以及Shapley值。结果:参考logistic回归模型LGE + FDG基于79个基线时伴有壁运动异常的cto相关心肌壁段,聚类ROC AUC (cROC AUC)为0.55(SE = 0.07),Global Absolute Shapley值为0.17(0.05)。参考对照在cROC AUC方面优于FDG独立对照(-35(17)%,p  0.05)。这三种模型的边际成功率之间没有统计学上的显著差异。此外,当使用混合效应逻辑回归、决策树、k近邻、朴素贝叶斯、随机森林和支持向量机,以及FDG、LGE和/或WMA的多参数组合时,没有发现显著的改善(差异  0.05)。结论:在本临床队列中,增加PET/MRI心功能、梗死扩展和/或代谢之间更复杂的相互作用并不能增强对灌注恢复后壁运动恢复的预测。这一发现提出了一个问题,即多参数FDG-PET/MRI分析是否在CTO血运重建的风险分层中有明显的益处。更大的队列和外部验证数据集的进一步研究对于澄清这个问题和完善多参数成像在这种情况下的作用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can multiparametric FDG-PET/MRI analysis really enhance the prediction of myocardial recovery after CTO revascularization? A machine learning study.

Purpose: To comprehensively evaluate the effectiveness of FDG-PET/MRI multiparametric analysis in predicting myocardial wall motion recovery following revascularization of chronic coronary total occlusions (CTO), incorporating both traditional and machine learning approaches.

Methods: This retrospective study assessed fluorine-18 fluorodeoxyglucose uptake (FDG), late gadolinium enhanced MR imaging (LGE), and MR wall motion abnormalities (WMA) of the left ventricle walls of a clinical cohort with 21 CTO patients (62 ± 9 years, 20 men). All patients were examined using a PET/MRI prior to revascularization and a follow-up cardiac MRI six months later. Prediction models for wall motion recovery after perfusion restoration were developed using linear and nonlinear algorithms as well as multiparametric variables. Performance and prediction explainability were evaluated in a 5x2 cross-validation framework, using ROC AUC and McNemar's test modified for clustered matched-pair data, and Shapley values.

Results: Based on 79 CTO-subtended myocardial wall segments with wall motion abnormalities at baseline, the reference logistic regression model LGE + FDG obtained 0.55(SE = 0.07) in the clustered ROC AUC (cROC AUC) and 0.17(0.05) in the Global Absolute Shapley value. The reference outperformed FDG standalone in cROC AUC (-35(17) %, p < 0.0001), but not LGE standalone (11(12) %, p > 0.05). There were no statistically significant differences between the marginal probabilities of success of these three models. Moreover, no significant improvements (differences < 10 % in cROC AUC, and < 20 % in Global Absolute Shapley, p > 0.05) were found when using mixed effects logistic regression, decision tree, k-nearest neighbor, Naive Bayes, random forest, and support vector machine, with multiparametric combinations of FDG, LGE, and/or WMA.

Conclusion: In this clinical cohort, adding more complex interactions between PET/MRI imaging of cardiac function, infarct extension, and/or metabolism did not enhance the prediction of wall motion recovery after perfusion restoration. This finding raises the question whether multiparametric FDG-PET/MRI analysis has demonstrable benefits in risk stratification for CTO revascularization. Further studies with larger cohorts and external validation datasets are crucial to clarify this question and refine the role of multiparametric imaging in this context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信