巨像:大数据辐射流行病学研究软件。

IF 1.4 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Eric Giunta, Dawson Stutzman, Sarah S Cohen, Benjamin French, Linda Walsh, Lawrence T Dauer, John D Boice, Steve R Blattnig, Dan Andresen, Amir A Bahadori
{"title":"巨像:大数据辐射流行病学研究软件。","authors":"Eric Giunta, Dawson Stutzman, Sarah S Cohen, Benjamin French, Linda Walsh, Lawrence T Dauer, John D Boice, Steve R Blattnig, Dan Andresen, Amir A Bahadori","doi":"10.1088/1361-6498/adcd80","DOIUrl":null,"url":null,"abstract":"<p><p>Colossus is designed to meet a growing need for survival analysis software capable of analyzing tens of millions of rows of radiation epidemiological data. Colossus is an R package devised to offer scalable survival analysis for the Million Person Study. The total and relative rate equations available in Colossus are outlined in this article, which are used in conjunction with Cox proportional hazards, Poisson, and Fine-Grey regression models. Following a comparison with existing software, validation with epidemiological cohort data is described. Exposure data and specific causes of death among workers at Los Alamos National Laboratory and U.S. nuclear power plants were analyzed by Colossus and 32-bit Epicure and compared with published results. Colossus results agreed with the results of existing software and previous publications.</p>","PeriodicalId":50068,"journal":{"name":"Journal of Radiological Protection","volume":"45 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colossus: software for radiation epidemiological studies with big data.\",\"authors\":\"Eric Giunta, Dawson Stutzman, Sarah S Cohen, Benjamin French, Linda Walsh, Lawrence T Dauer, John D Boice, Steve R Blattnig, Dan Andresen, Amir A Bahadori\",\"doi\":\"10.1088/1361-6498/adcd80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colossus is designed to meet a growing need for survival analysis software capable of analyzing tens of millions of rows of radiation epidemiological data. Colossus is an R package devised to offer scalable survival analysis for the Million Person Study. The total and relative rate equations available in Colossus are outlined in this article, which are used in conjunction with Cox proportional hazards, Poisson, and Fine-Grey regression models. Following a comparison with existing software, validation with epidemiological cohort data is described. Exposure data and specific causes of death among workers at Los Alamos National Laboratory and U.S. nuclear power plants were analyzed by Colossus and 32-bit Epicure and compared with published results. Colossus results agreed with the results of existing software and previous publications.</p>\",\"PeriodicalId\":50068,\"journal\":{\"name\":\"Journal of Radiological Protection\",\"volume\":\"45 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiological Protection\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6498/adcd80\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiological Protection","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1088/1361-6498/adcd80","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

Colossus的设计是为了满足对生存分析软件日益增长的需求,该软件能够分析数千万行辐射流行病学数据。Colossus是一个R软件包,旨在为百万人研究提供可扩展的生存分析。本文概述了巨像中可用的总速率和相对速率方程,这些方程与Cox比例风险、泊松和Fine-Grey回归模型一起使用。在与现有软件进行比较后,描述了流行病学队列数据的验证。通过Colossus和32位Epicure分析了洛斯阿拉莫斯国家实验室和美国核电站工作人员的暴露数据和具体死亡原因,并与已发表的结果进行了比较。Colossus的结果与现有软件和先前出版物的结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Colossus: software for radiation epidemiological studies with big data.

Colossus is designed to meet a growing need for survival analysis software capable of analyzing tens of millions of rows of radiation epidemiological data. Colossus is an R package devised to offer scalable survival analysis for the Million Person Study. The total and relative rate equations available in Colossus are outlined in this article, which are used in conjunction with Cox proportional hazards, Poisson, and Fine-Grey regression models. Following a comparison with existing software, validation with epidemiological cohort data is described. Exposure data and specific causes of death among workers at Los Alamos National Laboratory and U.S. nuclear power plants were analyzed by Colossus and 32-bit Epicure and compared with published results. Colossus results agreed with the results of existing software and previous publications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Radiological Protection
Journal of Radiological Protection 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
2.60
自引率
26.70%
发文量
137
审稿时长
18-36 weeks
期刊介绍: Journal of Radiological Protection publishes articles on all aspects of radiological protection, including non-ionising as well as ionising radiations. Fields of interest range from research, development and theory to operational matters, education and training. The very wide spectrum of its topics includes: dosimetry, instrument development, specialized measuring techniques, epidemiology, biological effects (in vivo and in vitro) and risk and environmental impact assessments. The journal encourages publication of data and code as well as results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信