基于形态分类的三维神经元谱系群体优化生产。

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING
Ji-Hee Choi, Yun-Gwi Park, Jongil Ju, Soon-Jung Park, Sung-Hwan Moon
{"title":"基于形态分类的三维神经元谱系群体优化生产。","authors":"Ji-Hee Choi, Yun-Gwi Park, Jongil Ju, Soon-Jung Park, Sung-Hwan Moon","doi":"10.1007/s13770-025-00721-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The increasing prevalence of neurodegenerative diseases and toxic substance exposure highlights the need for neuronal cell models that closely mimic human neurons in vivo. Compared to traditional models, human pluripotent stem cell (hPSC)-derived three-dimensional models mimic human physiological characteristics and complex nervous system interactions. These models enable patient-specific treatments and improve the predictive accuracy of drug toxicity evaluations. However, differentiation efficiency varies based on organoid size, structure, and cell line characteristics, necessitating standardized protocols for consistent outcome.</p><p><strong>Methods: </strong>The morphological characteristics of hPSC-derived embryonic bodies (EBs) formed by concave microwells were analyzed at the early stage of neuronal differentiation. Criteria were established to identify cells with high differentiation efficiency, enabling the optimization of differentiation methods applicable across various cell lines. Neuronal organoids were generated using a microfluidic-concave chip, and their suitability for drug toxicity testing was assessed.</p><p><strong>Results: </strong>EBs, formed in 500 µm concave microwells, exhibited the highest efficiency for neuronal cell differentiation. Cavity-like EBs were more suitable for neuronal differentiation and maturation than cystic-like forms. The optimal neuronal lineage differentiation method was established, and the drug toxicity sensitivity of organoids generated from this method was validated.</p><p><strong>Conclusions: </strong>This study identified EB structures suitable for neuronal lineage differentiation based on morphological classification. Furthermore, this study suggested an optimal method for generating neuronal organoids. This method can be applied to various cell lines, enabling its precise use in patient-specific treatments and drug toxicity tests.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":"661-674"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209121/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimal Production of 3D Neuronal Lineage Population by Morphological Classification.\",\"authors\":\"Ji-Hee Choi, Yun-Gwi Park, Jongil Ju, Soon-Jung Park, Sung-Hwan Moon\",\"doi\":\"10.1007/s13770-025-00721-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The increasing prevalence of neurodegenerative diseases and toxic substance exposure highlights the need for neuronal cell models that closely mimic human neurons in vivo. Compared to traditional models, human pluripotent stem cell (hPSC)-derived three-dimensional models mimic human physiological characteristics and complex nervous system interactions. These models enable patient-specific treatments and improve the predictive accuracy of drug toxicity evaluations. However, differentiation efficiency varies based on organoid size, structure, and cell line characteristics, necessitating standardized protocols for consistent outcome.</p><p><strong>Methods: </strong>The morphological characteristics of hPSC-derived embryonic bodies (EBs) formed by concave microwells were analyzed at the early stage of neuronal differentiation. Criteria were established to identify cells with high differentiation efficiency, enabling the optimization of differentiation methods applicable across various cell lines. Neuronal organoids were generated using a microfluidic-concave chip, and their suitability for drug toxicity testing was assessed.</p><p><strong>Results: </strong>EBs, formed in 500 µm concave microwells, exhibited the highest efficiency for neuronal cell differentiation. Cavity-like EBs were more suitable for neuronal differentiation and maturation than cystic-like forms. The optimal neuronal lineage differentiation method was established, and the drug toxicity sensitivity of organoids generated from this method was validated.</p><p><strong>Conclusions: </strong>This study identified EB structures suitable for neuronal lineage differentiation based on morphological classification. Furthermore, this study suggested an optimal method for generating neuronal organoids. This method can be applied to various cell lines, enabling its precise use in patient-specific treatments and drug toxicity tests.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"661-674\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12209121/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-025-00721-0\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00721-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

背景:神经退行性疾病和有毒物质暴露的日益流行突出了对在体内接近模拟人类神经元的神经细胞模型的需求。与传统模型相比,人类多能干细胞(hPSC)衍生的三维模型模拟了人类的生理特征和复杂的神经系统相互作用。这些模型使患者特异性治疗和提高药物毒性评估的预测准确性。然而,分化效率因类器官大小、结构和细胞系特征而异,因此需要标准化的方案以获得一致的结果。方法:观察凹微孔形成的hpsc胚体在神经元分化早期的形态学特征。建立分化效率高的细胞鉴定标准,优化适用于不同细胞系的分化方法。利用微流控凹芯片生成神经元类器官,并对其进行药物毒性测试。结果:在500µm的凹微孔中形成的EBs对神经元细胞的分化效率最高。腔样EBs比囊样EBs更适合神经元的分化和成熟。建立了最佳神经元谱系分化方法,并验证了该方法生成的类器官的药物毒性敏感性。结论:本研究基于形态学分类鉴定了适合神经元谱系分化的EB结构。此外,本研究还提出了一种生成神经元类器官的最佳方法。这种方法可以应用于各种细胞系,使其能够在患者特异性治疗和药物毒性测试中精确使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Production of 3D Neuronal Lineage Population by Morphological Classification.

Background: The increasing prevalence of neurodegenerative diseases and toxic substance exposure highlights the need for neuronal cell models that closely mimic human neurons in vivo. Compared to traditional models, human pluripotent stem cell (hPSC)-derived three-dimensional models mimic human physiological characteristics and complex nervous system interactions. These models enable patient-specific treatments and improve the predictive accuracy of drug toxicity evaluations. However, differentiation efficiency varies based on organoid size, structure, and cell line characteristics, necessitating standardized protocols for consistent outcome.

Methods: The morphological characteristics of hPSC-derived embryonic bodies (EBs) formed by concave microwells were analyzed at the early stage of neuronal differentiation. Criteria were established to identify cells with high differentiation efficiency, enabling the optimization of differentiation methods applicable across various cell lines. Neuronal organoids were generated using a microfluidic-concave chip, and their suitability for drug toxicity testing was assessed.

Results: EBs, formed in 500 µm concave microwells, exhibited the highest efficiency for neuronal cell differentiation. Cavity-like EBs were more suitable for neuronal differentiation and maturation than cystic-like forms. The optimal neuronal lineage differentiation method was established, and the drug toxicity sensitivity of organoids generated from this method was validated.

Conclusions: This study identified EB structures suitable for neuronal lineage differentiation based on morphological classification. Furthermore, this study suggested an optimal method for generating neuronal organoids. This method can be applied to various cell lines, enabling its precise use in patient-specific treatments and drug toxicity tests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信