Di Wu, Anatoly Fedorov Kukk, Rüdiger Panzer, Steffen Emmert, Bernhard Roth
{"title":"用光学相干断层扫描和拉曼光谱双峰系统在体内鉴别皮肤黑色素瘤和良性痣。","authors":"Di Wu, Anatoly Fedorov Kukk, Rüdiger Panzer, Steffen Emmert, Bernhard Roth","doi":"10.1002/jbio.70040","DOIUrl":null,"url":null,"abstract":"<p>A multimodal method comprising optical imaging using OCT and molecular detection using Raman spectroscopy was developed to explore its capability for noninvasive differentiation between melanoma skin cancer and benign skin lesions. Key OCT parameters like the attenuation coefficient, <i>R</i>\n <sup>2</sup>, and RMSE, extracted through exponential fitting, were incorporated into machine learning, achieving 96.9% accuracy and an AUC-ROC of 0.99 in 10-fold cross-validation. Raman spectroscopy revealed differences in carotenoid, amide-I, and CH<sub>2</sub>–CH<sub>3</sub> structures between melanoma and nevi, supporting the OCT findings. Autofluorescence background intensity variations further distinguished lesion types and enhanced lesion assessment. Future work will include the investigation of larger patient groups and the combination of both data sets in a combined algorithm. Also, the integration of both modalities and the developed method with photoacoustic tomography and high-frequency ultrasound appears beneficial toward achieving an optical biopsy of melanoma skin cancer and improving diagnostics.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.70040","citationCount":"0","resultStr":"{\"title\":\"In Vivo Differentiation of Cutaneous Melanoma From Benign Nevi With Dual-Modal System of Optical Coherence Tomography and Raman Spectroscopy\",\"authors\":\"Di Wu, Anatoly Fedorov Kukk, Rüdiger Panzer, Steffen Emmert, Bernhard Roth\",\"doi\":\"10.1002/jbio.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A multimodal method comprising optical imaging using OCT and molecular detection using Raman spectroscopy was developed to explore its capability for noninvasive differentiation between melanoma skin cancer and benign skin lesions. Key OCT parameters like the attenuation coefficient, <i>R</i>\\n <sup>2</sup>, and RMSE, extracted through exponential fitting, were incorporated into machine learning, achieving 96.9% accuracy and an AUC-ROC of 0.99 in 10-fold cross-validation. Raman spectroscopy revealed differences in carotenoid, amide-I, and CH<sub>2</sub>–CH<sub>3</sub> structures between melanoma and nevi, supporting the OCT findings. Autofluorescence background intensity variations further distinguished lesion types and enhanced lesion assessment. Future work will include the investigation of larger patient groups and the combination of both data sets in a combined algorithm. Also, the integration of both modalities and the developed method with photoacoustic tomography and high-frequency ultrasound appears beneficial toward achieving an optical biopsy of melanoma skin cancer and improving diagnostics.</p>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.70040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.70040\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.70040","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
In Vivo Differentiation of Cutaneous Melanoma From Benign Nevi With Dual-Modal System of Optical Coherence Tomography and Raman Spectroscopy
A multimodal method comprising optical imaging using OCT and molecular detection using Raman spectroscopy was developed to explore its capability for noninvasive differentiation between melanoma skin cancer and benign skin lesions. Key OCT parameters like the attenuation coefficient, R2, and RMSE, extracted through exponential fitting, were incorporated into machine learning, achieving 96.9% accuracy and an AUC-ROC of 0.99 in 10-fold cross-validation. Raman spectroscopy revealed differences in carotenoid, amide-I, and CH2–CH3 structures between melanoma and nevi, supporting the OCT findings. Autofluorescence background intensity variations further distinguished lesion types and enhanced lesion assessment. Future work will include the investigation of larger patient groups and the combination of both data sets in a combined algorithm. Also, the integration of both modalities and the developed method with photoacoustic tomography and high-frequency ultrasound appears beneficial toward achieving an optical biopsy of melanoma skin cancer and improving diagnostics.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.