{"title":"基于增强倒置变压器和时空图学习的航空发动机剩余使用寿命预测。","authors":"Shilong Sun, Hao Ding, Zida Zhao, Yu Zhou, Dong Wang, Wenfu Xu","doi":"10.1016/j.isatra.2025.05.010","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of aeroengine Remaining Useful Life (RUL) is critical for ensuring flight safety, minimizing maintenance costs, and improving operational efficiency. This study proposes a novel model, the Fourier-Enhanced Inverted Transformer with Graph-Augmented Spatiotemporal Modeling (FIT-GSTM), to enhance RUL prediction performance. FIT-GSTM combines an inverted Transformer with a Spatiotemporal Graph Convolutional Network (STGCN) to effectively capture global spatiotemporal dependencies across multi-sensor data. To further enrich feature representation, the model incorporates Fast Fourier Transform (FFT) to extract frequency-domain information and fuses it with time-domain features, enhancing robustness to noise. Additionally, the integration of Memory Tokens and Reversible Instance Normalization (RevIN) strengthens the model's ability to retain long-term dependencies and adapt to heterogeneous data distributions. Experimental evaluations on the C-MAPSS dataset demonstrate that FIT-GSTM achieves superior RUL prediction accuracy and generalization compared to existing methods, highlighting its potential for real-world deployment in aeroengine health management.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aeroengine remaining useful life prediction via integrating enhanced inverted transformer and spatiotemporal graph learning.\",\"authors\":\"Shilong Sun, Hao Ding, Zida Zhao, Yu Zhou, Dong Wang, Wenfu Xu\",\"doi\":\"10.1016/j.isatra.2025.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate prediction of aeroengine Remaining Useful Life (RUL) is critical for ensuring flight safety, minimizing maintenance costs, and improving operational efficiency. This study proposes a novel model, the Fourier-Enhanced Inverted Transformer with Graph-Augmented Spatiotemporal Modeling (FIT-GSTM), to enhance RUL prediction performance. FIT-GSTM combines an inverted Transformer with a Spatiotemporal Graph Convolutional Network (STGCN) to effectively capture global spatiotemporal dependencies across multi-sensor data. To further enrich feature representation, the model incorporates Fast Fourier Transform (FFT) to extract frequency-domain information and fuses it with time-domain features, enhancing robustness to noise. Additionally, the integration of Memory Tokens and Reversible Instance Normalization (RevIN) strengthens the model's ability to retain long-term dependencies and adapt to heterogeneous data distributions. Experimental evaluations on the C-MAPSS dataset demonstrate that FIT-GSTM achieves superior RUL prediction accuracy and generalization compared to existing methods, highlighting its potential for real-world deployment in aeroengine health management.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.05.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.05.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Aeroengine remaining useful life prediction via integrating enhanced inverted transformer and spatiotemporal graph learning.
Accurate prediction of aeroengine Remaining Useful Life (RUL) is critical for ensuring flight safety, minimizing maintenance costs, and improving operational efficiency. This study proposes a novel model, the Fourier-Enhanced Inverted Transformer with Graph-Augmented Spatiotemporal Modeling (FIT-GSTM), to enhance RUL prediction performance. FIT-GSTM combines an inverted Transformer with a Spatiotemporal Graph Convolutional Network (STGCN) to effectively capture global spatiotemporal dependencies across multi-sensor data. To further enrich feature representation, the model incorporates Fast Fourier Transform (FFT) to extract frequency-domain information and fuses it with time-domain features, enhancing robustness to noise. Additionally, the integration of Memory Tokens and Reversible Instance Normalization (RevIN) strengthens the model's ability to retain long-term dependencies and adapt to heterogeneous data distributions. Experimental evaluations on the C-MAPSS dataset demonstrate that FIT-GSTM achieves superior RUL prediction accuracy and generalization compared to existing methods, highlighting its potential for real-world deployment in aeroengine health management.