基于增强倒置变压器和时空图学习的航空发动机剩余使用寿命预测。

Shilong Sun, Hao Ding, Zida Zhao, Yu Zhou, Dong Wang, Wenfu Xu
{"title":"基于增强倒置变压器和时空图学习的航空发动机剩余使用寿命预测。","authors":"Shilong Sun, Hao Ding, Zida Zhao, Yu Zhou, Dong Wang, Wenfu Xu","doi":"10.1016/j.isatra.2025.05.010","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of aeroengine Remaining Useful Life (RUL) is critical for ensuring flight safety, minimizing maintenance costs, and improving operational efficiency. This study proposes a novel model, the Fourier-Enhanced Inverted Transformer with Graph-Augmented Spatiotemporal Modeling (FIT-GSTM), to enhance RUL prediction performance. FIT-GSTM combines an inverted Transformer with a Spatiotemporal Graph Convolutional Network (STGCN) to effectively capture global spatiotemporal dependencies across multi-sensor data. To further enrich feature representation, the model incorporates Fast Fourier Transform (FFT) to extract frequency-domain information and fuses it with time-domain features, enhancing robustness to noise. Additionally, the integration of Memory Tokens and Reversible Instance Normalization (RevIN) strengthens the model's ability to retain long-term dependencies and adapt to heterogeneous data distributions. Experimental evaluations on the C-MAPSS dataset demonstrate that FIT-GSTM achieves superior RUL prediction accuracy and generalization compared to existing methods, highlighting its potential for real-world deployment in aeroengine health management.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aeroengine remaining useful life prediction via integrating enhanced inverted transformer and spatiotemporal graph learning.\",\"authors\":\"Shilong Sun, Hao Ding, Zida Zhao, Yu Zhou, Dong Wang, Wenfu Xu\",\"doi\":\"10.1016/j.isatra.2025.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate prediction of aeroengine Remaining Useful Life (RUL) is critical for ensuring flight safety, minimizing maintenance costs, and improving operational efficiency. This study proposes a novel model, the Fourier-Enhanced Inverted Transformer with Graph-Augmented Spatiotemporal Modeling (FIT-GSTM), to enhance RUL prediction performance. FIT-GSTM combines an inverted Transformer with a Spatiotemporal Graph Convolutional Network (STGCN) to effectively capture global spatiotemporal dependencies across multi-sensor data. To further enrich feature representation, the model incorporates Fast Fourier Transform (FFT) to extract frequency-domain information and fuses it with time-domain features, enhancing robustness to noise. Additionally, the integration of Memory Tokens and Reversible Instance Normalization (RevIN) strengthens the model's ability to retain long-term dependencies and adapt to heterogeneous data distributions. Experimental evaluations on the C-MAPSS dataset demonstrate that FIT-GSTM achieves superior RUL prediction accuracy and generalization compared to existing methods, highlighting its potential for real-world deployment in aeroengine health management.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.05.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.05.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

航空发动机剩余使用寿命(RUL)的准确预测对于保证飞行安全、降低维修成本和提高运行效率至关重要。本研究提出了一种新的模型,傅里叶增强倒置变压器与图增强时空建模(FIT-GSTM),以提高RUL的预测性能。FIT-GSTM结合了一个倒置变压器和一个时空图卷积网络(STGCN),可以有效地捕获跨多传感器数据的全局时空依赖关系。为了进一步丰富特征表示,该模型采用快速傅里叶变换(FFT)提取频域信息,并将其与时域特征融合,增强了对噪声的鲁棒性。此外,内存令牌和可逆实例规范化(RevIN)的集成增强了模型保留长期依赖关系和适应异构数据分布的能力。在C-MAPSS数据集上的实验评估表明,与现有方法相比,FIT-GSTM实现了更高的RUL预测精度和泛化,突出了其在航空发动机健康管理中的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aeroengine remaining useful life prediction via integrating enhanced inverted transformer and spatiotemporal graph learning.

Accurate prediction of aeroengine Remaining Useful Life (RUL) is critical for ensuring flight safety, minimizing maintenance costs, and improving operational efficiency. This study proposes a novel model, the Fourier-Enhanced Inverted Transformer with Graph-Augmented Spatiotemporal Modeling (FIT-GSTM), to enhance RUL prediction performance. FIT-GSTM combines an inverted Transformer with a Spatiotemporal Graph Convolutional Network (STGCN) to effectively capture global spatiotemporal dependencies across multi-sensor data. To further enrich feature representation, the model incorporates Fast Fourier Transform (FFT) to extract frequency-domain information and fuses it with time-domain features, enhancing robustness to noise. Additionally, the integration of Memory Tokens and Reversible Instance Normalization (RevIN) strengthens the model's ability to retain long-term dependencies and adapt to heterogeneous data distributions. Experimental evaluations on the C-MAPSS dataset demonstrate that FIT-GSTM achieves superior RUL prediction accuracy and generalization compared to existing methods, highlighting its potential for real-world deployment in aeroengine health management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信