离子通道在阿尔茨海默病病理生理中的作用。

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Membrane Biology Pub Date : 2025-06-01 Epub Date: 2025-05-01 DOI:10.1007/s00232-025-00341-8
Ranjit Bhoi, Tuhina Mitra, Kallam Tejaswi, Vaishnav Manoj, Swagata Ghatak
{"title":"离子通道在阿尔茨海默病病理生理中的作用。","authors":"Ranjit Bhoi, Tuhina Mitra, Kallam Tejaswi, Vaishnav Manoj, Swagata Ghatak","doi":"10.1007/s00232-025-00341-8","DOIUrl":null,"url":null,"abstract":"<p><p>Ion channels play an integral role in the normal functioning of the brain. They regulate neuronal electrical properties like synaptic activity, generation of action potentials, maintenance of resting membrane potential and neuronal plasticity, and modulate the physiology of non-neuronal cells like astrocytes and microglia. Dysregulation of ionic homeostasis and channelopathies are associated with various neurological disorders, including Alzheimer's disease (AD). Several families of ion channels are associated with AD pathophysiology and progression. In this review, we outline the current research centered around ion channel dysregulation during AD and discuss briefly the possibility of using ion channels as therapeutic targets.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"187-212"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081594/pdf/","citationCount":"0","resultStr":"{\"title\":\"Role of Ion Channels in Alzheimer's Disease Pathophysiology.\",\"authors\":\"Ranjit Bhoi, Tuhina Mitra, Kallam Tejaswi, Vaishnav Manoj, Swagata Ghatak\",\"doi\":\"10.1007/s00232-025-00341-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ion channels play an integral role in the normal functioning of the brain. They regulate neuronal electrical properties like synaptic activity, generation of action potentials, maintenance of resting membrane potential and neuronal plasticity, and modulate the physiology of non-neuronal cells like astrocytes and microglia. Dysregulation of ionic homeostasis and channelopathies are associated with various neurological disorders, including Alzheimer's disease (AD). Several families of ion channels are associated with AD pathophysiology and progression. In this review, we outline the current research centered around ion channel dysregulation during AD and discuss briefly the possibility of using ion channels as therapeutic targets.</p>\",\"PeriodicalId\":50129,\"journal\":{\"name\":\"Journal of Membrane Biology\",\"volume\":\" \",\"pages\":\"187-212\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12081594/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-025-00341-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-025-00341-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

离子通道在大脑的正常功能中起着不可或缺的作用。它们调节神经元的电特性,如突触活动、动作电位的产生、静息膜电位的维持和神经元的可塑性,并调节星形胶质细胞和小胶质细胞等非神经元细胞的生理。离子稳态失调和通道病变与多种神经系统疾病有关,包括阿尔茨海默病(AD)。几个离子通道家族与阿尔茨海默病的病理生理和进展有关。在这篇综述中,我们概述了目前围绕AD期间离子通道失调的研究,并简要讨论了使用离子通道作为治疗靶点的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role of Ion Channels in Alzheimer's Disease Pathophysiology.

Ion channels play an integral role in the normal functioning of the brain. They regulate neuronal electrical properties like synaptic activity, generation of action potentials, maintenance of resting membrane potential and neuronal plasticity, and modulate the physiology of non-neuronal cells like astrocytes and microglia. Dysregulation of ionic homeostasis and channelopathies are associated with various neurological disorders, including Alzheimer's disease (AD). Several families of ion channels are associated with AD pathophysiology and progression. In this review, we outline the current research centered around ion channel dysregulation during AD and discuss briefly the possibility of using ion channels as therapeutic targets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Biology
Journal of Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
4.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function. Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations. While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信