Douglas M M Soares, Gabriela A Galeazzo, Germán G Sgro, Gabriela V de Moraes, Leora Kronenberg, Emmanuella Borukh, Alvaro E Migotto, David F Gruber, John S Sparks, Vincent A Pieribone, Cassius V Stevani, Anderson G Oliveira
{"title":"Velamins:从栉水母Velamen parallelum中分离出来的发出绿色光的钙调节光蛋白。","authors":"Douglas M M Soares, Gabriela A Galeazzo, Germán G Sgro, Gabriela V de Moraes, Leora Kronenberg, Emmanuella Borukh, Alvaro E Migotto, David F Gruber, John S Sparks, Vincent A Pieribone, Cassius V Stevani, Anderson G Oliveira","doi":"10.1111/febs.70096","DOIUrl":null,"url":null,"abstract":"<p><p>Ca<sup>2+</sup>-regulated photoproteins (CaPhs) consist of single-chain globular proteins to which coelenterazine, a widely distributed marine luminogenic substrate (the luciferin), binds along with molecular oxygen, producing a stable peroxide. Upon Ca<sup>2+</sup> addition, CaPhs undergo conformational changes leading to the cyclization of the peroxide and the formation of a high-energy intermediate. Subsequently, its decomposition yields coelenteramide in an excited state and results in the emission of a flash of light. To date, most known CaPh systems emit blue light (λ<sub>max</sub> 465-495 nm), except for two bolinopsin isospecies that emit green light (λ<sub>max</sub> 500 nm). Here, we report the cloning and functional characterization of wild-type CaPhs capable of emitting green light: velamins, isolated from the bioluminescent ctenophore Velamen parallelum. Ten unique photoprotein-like sequences were recovered and grouped in three main clusters. Representative sequences were cloned, expressed, purified, and regenerated into the active His-tagged α-, β-, and γ-velamins. Upon injection of a calcium-containing buffer into the velamin, a flash of green light (λ<sub>max</sub> 500-508 nm) was observed across pH values ranging from 7 to 9. Whilst α-velamin isoforms exhibited the highest light emission activity, β- and γ-velamins were found to be more thermostable at higher temperatures. Velamins are the wild-type CaPhs with the longest-wavelength light emission yet reported, making them an excellent model for investigating spectral modulation mechanisms in photoproteins.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Velamins: green-light-emitting calcium-regulated photoproteins isolated from the ctenophore Velamen parallelum.\",\"authors\":\"Douglas M M Soares, Gabriela A Galeazzo, Germán G Sgro, Gabriela V de Moraes, Leora Kronenberg, Emmanuella Borukh, Alvaro E Migotto, David F Gruber, John S Sparks, Vincent A Pieribone, Cassius V Stevani, Anderson G Oliveira\",\"doi\":\"10.1111/febs.70096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ca<sup>2+</sup>-regulated photoproteins (CaPhs) consist of single-chain globular proteins to which coelenterazine, a widely distributed marine luminogenic substrate (the luciferin), binds along with molecular oxygen, producing a stable peroxide. Upon Ca<sup>2+</sup> addition, CaPhs undergo conformational changes leading to the cyclization of the peroxide and the formation of a high-energy intermediate. Subsequently, its decomposition yields coelenteramide in an excited state and results in the emission of a flash of light. To date, most known CaPh systems emit blue light (λ<sub>max</sub> 465-495 nm), except for two bolinopsin isospecies that emit green light (λ<sub>max</sub> 500 nm). Here, we report the cloning and functional characterization of wild-type CaPhs capable of emitting green light: velamins, isolated from the bioluminescent ctenophore Velamen parallelum. Ten unique photoprotein-like sequences were recovered and grouped in three main clusters. Representative sequences were cloned, expressed, purified, and regenerated into the active His-tagged α-, β-, and γ-velamins. Upon injection of a calcium-containing buffer into the velamin, a flash of green light (λ<sub>max</sub> 500-508 nm) was observed across pH values ranging from 7 to 9. Whilst α-velamin isoforms exhibited the highest light emission activity, β- and γ-velamins were found to be more thermostable at higher temperatures. Velamins are the wild-type CaPhs with the longest-wavelength light emission yet reported, making them an excellent model for investigating spectral modulation mechanisms in photoproteins.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Velamins: green-light-emitting calcium-regulated photoproteins isolated from the ctenophore Velamen parallelum.
Ca2+-regulated photoproteins (CaPhs) consist of single-chain globular proteins to which coelenterazine, a widely distributed marine luminogenic substrate (the luciferin), binds along with molecular oxygen, producing a stable peroxide. Upon Ca2+ addition, CaPhs undergo conformational changes leading to the cyclization of the peroxide and the formation of a high-energy intermediate. Subsequently, its decomposition yields coelenteramide in an excited state and results in the emission of a flash of light. To date, most known CaPh systems emit blue light (λmax 465-495 nm), except for two bolinopsin isospecies that emit green light (λmax 500 nm). Here, we report the cloning and functional characterization of wild-type CaPhs capable of emitting green light: velamins, isolated from the bioluminescent ctenophore Velamen parallelum. Ten unique photoprotein-like sequences were recovered and grouped in three main clusters. Representative sequences were cloned, expressed, purified, and regenerated into the active His-tagged α-, β-, and γ-velamins. Upon injection of a calcium-containing buffer into the velamin, a flash of green light (λmax 500-508 nm) was observed across pH values ranging from 7 to 9. Whilst α-velamin isoforms exhibited the highest light emission activity, β- and γ-velamins were found to be more thermostable at higher temperatures. Velamins are the wild-type CaPhs with the longest-wavelength light emission yet reported, making them an excellent model for investigating spectral modulation mechanisms in photoproteins.