magnizli相中氧空位及其对热电性能的影响。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-04-30 DOI:10.3390/nano15090684
Zhou Guan, Chuangshi Feng, Hongquan Song, Lingxu Yang, Xin Wang, Huijun Liu, Jiawei Zhang, Fanqian Wei, Xin Yuan, Hengyong Yang, Yu Tang, Fuxiang Zhang
{"title":"magnizli相中氧空位及其对热电性能的影响。","authors":"Zhou Guan, Chuangshi Feng, Hongquan Song, Lingxu Yang, Xin Wang, Huijun Liu, Jiawei Zhang, Fanqian Wei, Xin Yuan, Hengyong Yang, Yu Tang, Fuxiang Zhang","doi":"10.3390/nano15090684","DOIUrl":null,"url":null,"abstract":"<p><p>Magnéli phases exhibit significant potential for applications in electronic materials in energy conversion due to their high electrical conductivity and excellent thermal stability. In this study, single-phase Ti<sub>n</sub>O<sub>2n-1</sub> (<i>n</i> = 4, 5, 6) bulk materials were successfully prepared by a combination of the carbothermal reduction of nano-sized rutile TiO<sub>2</sub> and hot-press sintering methods. The relationships between the phase evolution, microstructural features, and thermoelectric performance were investigated systematically. Synchrotron X-ray diffraction (SXRD) and scanning electron microscopy (SEM) analyses revealed that the Ti<sub>4</sub>O<sub>7</sub> and Ti<sub>5</sub>O<sub>9</sub> materials had single-phase structures with high densities (relative density > 97%) and no obvious grain boundary holes or microcracks. We tested the thermoelectric properties of the Magnéli phases in the temperature range of 300-1100 K. The Magnéli phases exhibited a significant temperature dependence, with peak zT values of 0.17, 0.18, and 0.14 for Ti<sub>4</sub>O<sub>7</sub>, Ti<sub>5</sub>O<sub>9</sub>, and Ti<sub>6</sub>O<sub>11</sub>, respectively, at 1100 K. This variation in thermoelectric performance was mainly attributed to the synergistic effect of the oxygen vacancy concentration and the shear surface density on the carrier concentration and lattice thermal conductivity. Furthermore, the Fermi energy levels and electronic thermal conductivity of the Magnéli phases were calculated using the single parabolic band (SPB) model.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073597/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oxygen Vacancy in Magnéli Phases and Its Effect on Thermoelectric Performances.\",\"authors\":\"Zhou Guan, Chuangshi Feng, Hongquan Song, Lingxu Yang, Xin Wang, Huijun Liu, Jiawei Zhang, Fanqian Wei, Xin Yuan, Hengyong Yang, Yu Tang, Fuxiang Zhang\",\"doi\":\"10.3390/nano15090684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnéli phases exhibit significant potential for applications in electronic materials in energy conversion due to their high electrical conductivity and excellent thermal stability. In this study, single-phase Ti<sub>n</sub>O<sub>2n-1</sub> (<i>n</i> = 4, 5, 6) bulk materials were successfully prepared by a combination of the carbothermal reduction of nano-sized rutile TiO<sub>2</sub> and hot-press sintering methods. The relationships between the phase evolution, microstructural features, and thermoelectric performance were investigated systematically. Synchrotron X-ray diffraction (SXRD) and scanning electron microscopy (SEM) analyses revealed that the Ti<sub>4</sub>O<sub>7</sub> and Ti<sub>5</sub>O<sub>9</sub> materials had single-phase structures with high densities (relative density > 97%) and no obvious grain boundary holes or microcracks. We tested the thermoelectric properties of the Magnéli phases in the temperature range of 300-1100 K. The Magnéli phases exhibited a significant temperature dependence, with peak zT values of 0.17, 0.18, and 0.14 for Ti<sub>4</sub>O<sub>7</sub>, Ti<sub>5</sub>O<sub>9</sub>, and Ti<sub>6</sub>O<sub>11</sub>, respectively, at 1100 K. This variation in thermoelectric performance was mainly attributed to the synergistic effect of the oxygen vacancy concentration and the shear surface density on the carrier concentration and lattice thermal conductivity. Furthermore, the Fermi energy levels and electronic thermal conductivity of the Magnéli phases were calculated using the single parabolic band (SPB) model.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073597/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15090684\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15090684","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

magnacimri相具有高导电性和优异的热稳定性,在电子材料的能量转换方面具有巨大的应用潜力。本研究将纳米金红石型TiO2的碳热还原与热压烧结相结合,成功制备了单相TinO2n-1 (n = 4,5,6)块状材料。系统地研究了相演化、显微组织特征和热电性能之间的关系。同步x射线衍射(SXRD)和扫描电镜(SEM)分析表明,Ti4O7和Ti5O9材料具有高密度的单相结构(相对密度> 97%),无明显的晶界孔洞和微裂纹。我们在300-1100 K的温度范围内测试了magnsamli相的热电性能。在1100 K时,Ti4O7、Ti5O9和Ti6O11的zT峰值分别为0.17、0.18和0.14。这种热电性能的变化主要是由于氧空位浓度和剪切表面密度对载流子浓度和晶格导热系数的协同作用。在此基础上,利用单抛物带(SPB)模型计算了magnacimri相的费米能级和电子导热系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oxygen Vacancy in Magnéli Phases and Its Effect on Thermoelectric Performances.

Magnéli phases exhibit significant potential for applications in electronic materials in energy conversion due to their high electrical conductivity and excellent thermal stability. In this study, single-phase TinO2n-1 (n = 4, 5, 6) bulk materials were successfully prepared by a combination of the carbothermal reduction of nano-sized rutile TiO2 and hot-press sintering methods. The relationships between the phase evolution, microstructural features, and thermoelectric performance were investigated systematically. Synchrotron X-ray diffraction (SXRD) and scanning electron microscopy (SEM) analyses revealed that the Ti4O7 and Ti5O9 materials had single-phase structures with high densities (relative density > 97%) and no obvious grain boundary holes or microcracks. We tested the thermoelectric properties of the Magnéli phases in the temperature range of 300-1100 K. The Magnéli phases exhibited a significant temperature dependence, with peak zT values of 0.17, 0.18, and 0.14 for Ti4O7, Ti5O9, and Ti6O11, respectively, at 1100 K. This variation in thermoelectric performance was mainly attributed to the synergistic effect of the oxygen vacancy concentration and the shear surface density on the carrier concentration and lattice thermal conductivity. Furthermore, the Fermi energy levels and electronic thermal conductivity of the Magnéli phases were calculated using the single parabolic band (SPB) model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信