环反褶积显微镜:利用对称有效的空间变化像差校正。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-06-01 Epub Date: 2025-04-29 DOI:10.1038/s41592-025-02684-5
Amit Kohli, Anastasios N Angelopoulos, David McAllister, Esther Whang, Sixian You, Kyrollos Yanny, Federico M Gasparoli, Bo-Jui Chang, Reto Fiolka, Laura Waller
{"title":"环反褶积显微镜:利用对称有效的空间变化像差校正。","authors":"Amit Kohli, Anastasios N Angelopoulos, David McAllister, Esther Whang, Sixian You, Kyrollos Yanny, Federico M Gasparoli, Bo-Jui Chang, Reto Fiolka, Laura Waller","doi":"10.1038/s41592-025-02684-5","DOIUrl":null,"url":null,"abstract":"<p><p>The most ubiquitous form of aberration correction for microscopy is deconvolution; however, deconvolution relies on the assumption that the system's point spread function is the same across the entire field of view. This assumption is often inadequate, but space-variant deblurring techniques generally require impractical amounts of calibration and computation. We present an imaging pipeline that leverages symmetry to provide simple and fast spatially varying deblurring. Our ring deconvolution microscopy method utilizes the rotational symmetry of most microscopes and cameras, and naturally extends to sheet deconvolution in the case of lateral symmetry. We derive theory and algorithms for ring deconvolution microscopy and propose a neural network based on Seidel aberration coefficients as a fast alternative. We demonstrate improvements in speed and image quality as compared to standard deconvolution and existing spatially varying deblurring across a diverse range of microscope modalities, including miniature microscopy, multicolor fluorescence microscopy, multimode fiber micro-endoscopy and light-sheet fluorescence microscopy. Our approach enables near-isotropic, subcellular resolution in each of these applications.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1311-1320"},"PeriodicalIF":36.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165846/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ring deconvolution microscopy: exploiting symmetry for efficient spatially varying aberration correction.\",\"authors\":\"Amit Kohli, Anastasios N Angelopoulos, David McAllister, Esther Whang, Sixian You, Kyrollos Yanny, Federico M Gasparoli, Bo-Jui Chang, Reto Fiolka, Laura Waller\",\"doi\":\"10.1038/s41592-025-02684-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The most ubiquitous form of aberration correction for microscopy is deconvolution; however, deconvolution relies on the assumption that the system's point spread function is the same across the entire field of view. This assumption is often inadequate, but space-variant deblurring techniques generally require impractical amounts of calibration and computation. We present an imaging pipeline that leverages symmetry to provide simple and fast spatially varying deblurring. Our ring deconvolution microscopy method utilizes the rotational symmetry of most microscopes and cameras, and naturally extends to sheet deconvolution in the case of lateral symmetry. We derive theory and algorithms for ring deconvolution microscopy and propose a neural network based on Seidel aberration coefficients as a fast alternative. We demonstrate improvements in speed and image quality as compared to standard deconvolution and existing spatially varying deblurring across a diverse range of microscope modalities, including miniature microscopy, multicolor fluorescence microscopy, multimode fiber micro-endoscopy and light-sheet fluorescence microscopy. Our approach enables near-isotropic, subcellular resolution in each of these applications.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"1311-1320\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12165846/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02684-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02684-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

显微镜像差校正最普遍的形式是反褶积;然而,反卷积依赖于系统的点扩展函数在整个视场中是相同的假设。这种假设通常是不充分的,但空间变量去模糊技术通常需要不切实际的校准和计算量。我们提出了一个成像管道,利用对称提供简单和快速的空间变化去模糊。我们的环形反褶积显微镜方法利用了大多数显微镜和相机的旋转对称性,并且在横向对称的情况下自然地扩展到片状反褶积。我们推导了环形反褶积显微镜的理论和算法,并提出了一种基于赛德尔像差系数的神经网络作为一种快速替代方法。与标准的反褶积和现有的空间变化去模糊相比,我们展示了在不同范围的显微镜模式下的速度和图像质量的改进,包括微型显微镜、多色荧光显微镜、多模光纤显微内窥镜和光片荧光显微镜。我们的方法可以在这些应用中实现近各向同性的亚细胞分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ring deconvolution microscopy: exploiting symmetry for efficient spatially varying aberration correction.

The most ubiquitous form of aberration correction for microscopy is deconvolution; however, deconvolution relies on the assumption that the system's point spread function is the same across the entire field of view. This assumption is often inadequate, but space-variant deblurring techniques generally require impractical amounts of calibration and computation. We present an imaging pipeline that leverages symmetry to provide simple and fast spatially varying deblurring. Our ring deconvolution microscopy method utilizes the rotational symmetry of most microscopes and cameras, and naturally extends to sheet deconvolution in the case of lateral symmetry. We derive theory and algorithms for ring deconvolution microscopy and propose a neural network based on Seidel aberration coefficients as a fast alternative. We demonstrate improvements in speed and image quality as compared to standard deconvolution and existing spatially varying deblurring across a diverse range of microscope modalities, including miniature microscopy, multicolor fluorescence microscopy, multimode fiber micro-endoscopy and light-sheet fluorescence microscopy. Our approach enables near-isotropic, subcellular resolution in each of these applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信