使用ABCD数据集预训练的深度神经网络迁移学习用于韩国青少年一般精神病理预测。

Jundong Hwang, Jae-Eon Kang, Soohyun Jeon, Kyung Hwa Lee, Jae-Won Kim, Jong-Hwan Lee
{"title":"使用ABCD数据集预训练的深度神经网络迁移学习用于韩国青少年一般精神病理预测。","authors":"Jundong Hwang, Jae-Eon Kang, Soohyun Jeon, Kyung Hwa Lee, Jae-Won Kim, Jong-Hwan Lee","doi":"10.1016/j.bpsc.2025.04.005","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study examines whether a deep neural network (DNN), trained to predict the general psychopathology factor (p-factor) using functional magnetic resonance imaging (fMRI) data from adolescents in the Adolescent Brain Cognitive Development (ABCD) study, generalizes to Korean adolescents.</p><p><strong>Method: </strong>We trained a scanner-generalization neural network (SGNN) to predict p-factor scores from resting-state functional connectivity (RSFC) data of 6,905 ABCD adolescents, controlling for MRI scanner-related confounds. We then transferred the pretrained SGNN to a DNN to predict p-factor scores for 125 adolescents, including healthy individuals and those with major depressive disorder, using data from Seoul National University Hospital (SNUH). We compared the transferred DNN's performance with that of kernel ridge regression (KRR) and a baseline DNN.</p><p><strong>Results: </strong>The transferred DNN outperformed KRR (0.17 ± 0.16; 0.60 ± 0.07) and the baseline DNN (0.17 ± 0.16; 0.69 ± 0.11), achieving a higher Pearson's correlation coefficient (0.29 ± 0.18) and lower mean absolute error (0.59 ± 0.09; p < 0.005). We identified the default mode network (DMN) and visual network (VIS) as crucial functional networks (FNs) for predicting p-factors across both datasets. The dorsal attention network was specific to ABCD, while the cingulo-opercular and ventral attention networks were specific to SNUH.</p><p><strong>Conclusion: </strong>The transferred SGNN successfully generalized to Korean adolescents. Altered RSFC in the DMN and VIS may serve as promising biomarkers for p-factor prediction across diverse populations, addressing heterogeneity in demographics, diagnoses, and MRI scanner characteristics.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning of Deep Neural Networks Pretrained using the ABCD Dataset for General Psychopathology Prediction in Korean Adolescents.\",\"authors\":\"Jundong Hwang, Jae-Eon Kang, Soohyun Jeon, Kyung Hwa Lee, Jae-Won Kim, Jong-Hwan Lee\",\"doi\":\"10.1016/j.bpsc.2025.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study examines whether a deep neural network (DNN), trained to predict the general psychopathology factor (p-factor) using functional magnetic resonance imaging (fMRI) data from adolescents in the Adolescent Brain Cognitive Development (ABCD) study, generalizes to Korean adolescents.</p><p><strong>Method: </strong>We trained a scanner-generalization neural network (SGNN) to predict p-factor scores from resting-state functional connectivity (RSFC) data of 6,905 ABCD adolescents, controlling for MRI scanner-related confounds. We then transferred the pretrained SGNN to a DNN to predict p-factor scores for 125 adolescents, including healthy individuals and those with major depressive disorder, using data from Seoul National University Hospital (SNUH). We compared the transferred DNN's performance with that of kernel ridge regression (KRR) and a baseline DNN.</p><p><strong>Results: </strong>The transferred DNN outperformed KRR (0.17 ± 0.16; 0.60 ± 0.07) and the baseline DNN (0.17 ± 0.16; 0.69 ± 0.11), achieving a higher Pearson's correlation coefficient (0.29 ± 0.18) and lower mean absolute error (0.59 ± 0.09; p < 0.005). We identified the default mode network (DMN) and visual network (VIS) as crucial functional networks (FNs) for predicting p-factors across both datasets. The dorsal attention network was specific to ABCD, while the cingulo-opercular and ventral attention networks were specific to SNUH.</p><p><strong>Conclusion: </strong>The transferred SGNN successfully generalized to Korean adolescents. Altered RSFC in the DMN and VIS may serve as promising biomarkers for p-factor prediction across diverse populations, addressing heterogeneity in demographics, diagnoses, and MRI scanner characteristics.</p>\",\"PeriodicalId\":93900,\"journal\":{\"name\":\"Biological psychiatry. Cognitive neuroscience and neuroimaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological psychiatry. Cognitive neuroscience and neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpsc.2025.04.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry. Cognitive neuroscience and neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpsc.2025.04.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究探讨了深层神经网络(DNN)是否可以在青少年大脑认知发展(ABCD)研究中使用功能磁共振成像(fMRI)数据来预测一般精神病理因素(p-因子),并推广到韩国青少年。方法:在控制MRI扫描仪相关混杂因素的情况下,我们训练了一个扫描仪-概化神经网络(SGNN),从6905名ABCD青少年的静息状态功能连接(RSFC)数据中预测p因子得分。然后,我们使用首尔国立大学医院(SNUH)的数据,将预训练的SGNN转移到DNN,以预测125名青少年的p因子得分,包括健康个体和重度抑郁症患者。我们将转移的深度神经网络的性能与核脊回归(KRR)和基线深度神经网络的性能进行了比较。结果:转移DNN优于KRR(0.17±0.16;0.60±0.07)和基线DNN(0.17±0.16;0.69±0.11),Pearson相关系数较高(0.29±0.18),平均绝对误差较低(0.59±0.09);P < 0.005)。我们确定默认模式网络(DMN)和视觉网络(VIS)是预测两个数据集p因子的关键功能网络(FNs)。背侧注意网络是ABCD所特有的,而扣带-眼和腹侧注意网络是SNUH所特有的。结论:转移的SGNN在韩国青少年中推广成功。DMN和VIS中RSFC的改变可以作为不同人群p因子预测的有希望的生物标志物,解决人口统计学、诊断和MRI扫描仪特征的异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transfer Learning of Deep Neural Networks Pretrained using the ABCD Dataset for General Psychopathology Prediction in Korean Adolescents.

Background: This study examines whether a deep neural network (DNN), trained to predict the general psychopathology factor (p-factor) using functional magnetic resonance imaging (fMRI) data from adolescents in the Adolescent Brain Cognitive Development (ABCD) study, generalizes to Korean adolescents.

Method: We trained a scanner-generalization neural network (SGNN) to predict p-factor scores from resting-state functional connectivity (RSFC) data of 6,905 ABCD adolescents, controlling for MRI scanner-related confounds. We then transferred the pretrained SGNN to a DNN to predict p-factor scores for 125 adolescents, including healthy individuals and those with major depressive disorder, using data from Seoul National University Hospital (SNUH). We compared the transferred DNN's performance with that of kernel ridge regression (KRR) and a baseline DNN.

Results: The transferred DNN outperformed KRR (0.17 ± 0.16; 0.60 ± 0.07) and the baseline DNN (0.17 ± 0.16; 0.69 ± 0.11), achieving a higher Pearson's correlation coefficient (0.29 ± 0.18) and lower mean absolute error (0.59 ± 0.09; p < 0.005). We identified the default mode network (DMN) and visual network (VIS) as crucial functional networks (FNs) for predicting p-factors across both datasets. The dorsal attention network was specific to ABCD, while the cingulo-opercular and ventral attention networks were specific to SNUH.

Conclusion: The transferred SGNN successfully generalized to Korean adolescents. Altered RSFC in the DMN and VIS may serve as promising biomarkers for p-factor prediction across diverse populations, addressing heterogeneity in demographics, diagnoses, and MRI scanner characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信