{"title":"外粘接FRP混凝土结构的无损检测:综述。","authors":"Eyad Alsuhaibani","doi":"10.3390/polym17091284","DOIUrl":null,"url":null,"abstract":"<p><p>The growing application of Fiber-Reinforced Polymer (FRP) composites in rehabilitating deteriorating concrete infrastructure underscores the need for reliable, cost-effective, and automated nondestructive testing (NDT) methods. This review provides a comprehensive analysis of existing and emerging NDT techniques used to assess externally bonded FRP (EB-FRP) systems, emphasizing their accuracy, limitations, and practicality. Various NDT methods, including Ground-Penetrating Radar (GPR), Phased Array Ultrasonic Testing (PAUT), Infrared Thermography (IRT), Acoustic Emission (AE), and Impact-Echo (IE), are critically evaluated in terms of their effectiveness in detecting debonding, voids, delaminations, and other defects. Recent technological advancements, particularly the integration of artificial intelligence (AI) and machine learning (ML) in NDT applications, have significantly improved defect characterization, automated inspections, and real-time data analysis. This review highlights AI-driven NDT approaches such as automated crack detection, hybrid NDT frameworks, and drone-assisted thermographic inspections, which enhance accuracy and efficiency in large-scale infrastructure assessments. Additionally, economic considerations and cost-performance trade-offs are analyzed, addressing the feasibility of different NDT methods in real-world FRP-strengthened structures. Finally, the review identifies key research gaps, including the need for standardization in FRP-NDT applications, AI-enhanced defect quantification, and hybrid inspection techniques. By consolidating state-of-the-art research and emerging innovations, this paper serves as a valuable resource for engineers, researchers, and practitioners involved in the assessment, monitoring, and maintenance of FRP-strengthened concrete structures.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073467/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nondestructive Testing of Externally Bonded FRP Concrete Structures: A Comprehensive Review.\",\"authors\":\"Eyad Alsuhaibani\",\"doi\":\"10.3390/polym17091284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing application of Fiber-Reinforced Polymer (FRP) composites in rehabilitating deteriorating concrete infrastructure underscores the need for reliable, cost-effective, and automated nondestructive testing (NDT) methods. This review provides a comprehensive analysis of existing and emerging NDT techniques used to assess externally bonded FRP (EB-FRP) systems, emphasizing their accuracy, limitations, and practicality. Various NDT methods, including Ground-Penetrating Radar (GPR), Phased Array Ultrasonic Testing (PAUT), Infrared Thermography (IRT), Acoustic Emission (AE), and Impact-Echo (IE), are critically evaluated in terms of their effectiveness in detecting debonding, voids, delaminations, and other defects. Recent technological advancements, particularly the integration of artificial intelligence (AI) and machine learning (ML) in NDT applications, have significantly improved defect characterization, automated inspections, and real-time data analysis. This review highlights AI-driven NDT approaches such as automated crack detection, hybrid NDT frameworks, and drone-assisted thermographic inspections, which enhance accuracy and efficiency in large-scale infrastructure assessments. Additionally, economic considerations and cost-performance trade-offs are analyzed, addressing the feasibility of different NDT methods in real-world FRP-strengthened structures. Finally, the review identifies key research gaps, including the need for standardization in FRP-NDT applications, AI-enhanced defect quantification, and hybrid inspection techniques. By consolidating state-of-the-art research and emerging innovations, this paper serves as a valuable resource for engineers, researchers, and practitioners involved in the assessment, monitoring, and maintenance of FRP-strengthened concrete structures.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073467/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17091284\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17091284","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Nondestructive Testing of Externally Bonded FRP Concrete Structures: A Comprehensive Review.
The growing application of Fiber-Reinforced Polymer (FRP) composites in rehabilitating deteriorating concrete infrastructure underscores the need for reliable, cost-effective, and automated nondestructive testing (NDT) methods. This review provides a comprehensive analysis of existing and emerging NDT techniques used to assess externally bonded FRP (EB-FRP) systems, emphasizing their accuracy, limitations, and practicality. Various NDT methods, including Ground-Penetrating Radar (GPR), Phased Array Ultrasonic Testing (PAUT), Infrared Thermography (IRT), Acoustic Emission (AE), and Impact-Echo (IE), are critically evaluated in terms of their effectiveness in detecting debonding, voids, delaminations, and other defects. Recent technological advancements, particularly the integration of artificial intelligence (AI) and machine learning (ML) in NDT applications, have significantly improved defect characterization, automated inspections, and real-time data analysis. This review highlights AI-driven NDT approaches such as automated crack detection, hybrid NDT frameworks, and drone-assisted thermographic inspections, which enhance accuracy and efficiency in large-scale infrastructure assessments. Additionally, economic considerations and cost-performance trade-offs are analyzed, addressing the feasibility of different NDT methods in real-world FRP-strengthened structures. Finally, the review identifies key research gaps, including the need for standardization in FRP-NDT applications, AI-enhanced defect quantification, and hybrid inspection techniques. By consolidating state-of-the-art research and emerging innovations, this paper serves as a valuable resource for engineers, researchers, and practitioners involved in the assessment, monitoring, and maintenance of FRP-strengthened concrete structures.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.