Jiacheng Zhang, Shuai Feng, Yannan Geng, Xiaoli Wang, Zhen Wang, Yang Liu
{"title":"心肌梗死后免疫细胞的抗炎表型及治疗策略展望。","authors":"Jiacheng Zhang, Shuai Feng, Yannan Geng, Xiaoli Wang, Zhen Wang, Yang Liu","doi":"10.1007/s00210-025-04167-y","DOIUrl":null,"url":null,"abstract":"<p><p>Often causing negative cardiac remodeling and heart failure, a major threat to human life and health, myocardial infarction (MI) is a cardiovascular disease with a high morbidity and fatality rate worldwide. Maintaining ordinary heart function depends significantly on the immune system. Necrotic cardiomyocyte signals promote specific immunity and activate general immunity as the disease progresses in MI. Complex immune cells play a key role in all stages of MI progression by removing necrotic cardiomyocytes and tissue and promoting the healing of damaged tissue cells. Immune cells can help to regrow injured heart muscle as well as enable both inflammation and cardiomyocyte death. Immune cells are essential elements that help the immune system carry out its protective function. There are two types of immunity: nonspecific immunity and specific immunity. Developed throughout the long-term evolution of species, nonspecific immunity (including macrophages, myeloid-derived suppressor cells MDSC, natural killer cells NK, neutrophils, and dendritic cells DC) offers immediate and conservative host defense that might destroy healthy tissues because of its nonspecific nature. Precisely acquired immunity, specific immunity helps humoral and cellular immunity mediated through B and T cells correspondingly. These findings offer crucial information needed for the creation of effective immunomodulatory treatment, as discussed in this article.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":"13225-13247"},"PeriodicalIF":3.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-inflammatory phenotypes of immune cells after myocardial infarction and prospects of therapeutic strategy.\",\"authors\":\"Jiacheng Zhang, Shuai Feng, Yannan Geng, Xiaoli Wang, Zhen Wang, Yang Liu\",\"doi\":\"10.1007/s00210-025-04167-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Often causing negative cardiac remodeling and heart failure, a major threat to human life and health, myocardial infarction (MI) is a cardiovascular disease with a high morbidity and fatality rate worldwide. Maintaining ordinary heart function depends significantly on the immune system. Necrotic cardiomyocyte signals promote specific immunity and activate general immunity as the disease progresses in MI. Complex immune cells play a key role in all stages of MI progression by removing necrotic cardiomyocytes and tissue and promoting the healing of damaged tissue cells. Immune cells can help to regrow injured heart muscle as well as enable both inflammation and cardiomyocyte death. Immune cells are essential elements that help the immune system carry out its protective function. There are two types of immunity: nonspecific immunity and specific immunity. Developed throughout the long-term evolution of species, nonspecific immunity (including macrophages, myeloid-derived suppressor cells MDSC, natural killer cells NK, neutrophils, and dendritic cells DC) offers immediate and conservative host defense that might destroy healthy tissues because of its nonspecific nature. Precisely acquired immunity, specific immunity helps humoral and cellular immunity mediated through B and T cells correspondingly. These findings offer crucial information needed for the creation of effective immunomodulatory treatment, as discussed in this article.</p>\",\"PeriodicalId\":18876,\"journal\":{\"name\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"volume\":\" \",\"pages\":\"13225-13247\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naunyn-Schmiedeberg's archives of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00210-025-04167-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-025-04167-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Anti-inflammatory phenotypes of immune cells after myocardial infarction and prospects of therapeutic strategy.
Often causing negative cardiac remodeling and heart failure, a major threat to human life and health, myocardial infarction (MI) is a cardiovascular disease with a high morbidity and fatality rate worldwide. Maintaining ordinary heart function depends significantly on the immune system. Necrotic cardiomyocyte signals promote specific immunity and activate general immunity as the disease progresses in MI. Complex immune cells play a key role in all stages of MI progression by removing necrotic cardiomyocytes and tissue and promoting the healing of damaged tissue cells. Immune cells can help to regrow injured heart muscle as well as enable both inflammation and cardiomyocyte death. Immune cells are essential elements that help the immune system carry out its protective function. There are two types of immunity: nonspecific immunity and specific immunity. Developed throughout the long-term evolution of species, nonspecific immunity (including macrophages, myeloid-derived suppressor cells MDSC, natural killer cells NK, neutrophils, and dendritic cells DC) offers immediate and conservative host defense that might destroy healthy tissues because of its nonspecific nature. Precisely acquired immunity, specific immunity helps humoral and cellular immunity mediated through B and T cells correspondingly. These findings offer crucial information needed for the creation of effective immunomodulatory treatment, as discussed in this article.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.