{"title":"细胞事件基因组记录的分子电路。","authors":"Wei Chen, Junhong Choi","doi":"10.1016/j.tig.2025.04.004","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in precise genome editing are enabling genomic recordings of cellular events. Since the initial demonstration of CRISPR-based genome editing, the field of genomic recording has witnessed key strides in lineage recording, where clonal lineage relationships among cells are indirectly recorded as synthetic mutations. However, methods for directly recording and reconstructing past cellular events are still limited, and their potential for revealing new insights into cell fate decisions has yet to be realized. The field needs new sensing modules and genetic circuit architectures that faithfully encode past cellular states into genomic DNA recordings to achieve such goals. Here we review recently developed strategies to construct diverse sensors and explore how emerging synthetic biology tools may help to build molecular circuits for genomic recording of diverse cellular events.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular circuits for genomic recording of cellular events.\",\"authors\":\"Wei Chen, Junhong Choi\",\"doi\":\"10.1016/j.tig.2025.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advances in precise genome editing are enabling genomic recordings of cellular events. Since the initial demonstration of CRISPR-based genome editing, the field of genomic recording has witnessed key strides in lineage recording, where clonal lineage relationships among cells are indirectly recorded as synthetic mutations. However, methods for directly recording and reconstructing past cellular events are still limited, and their potential for revealing new insights into cell fate decisions has yet to be realized. The field needs new sensing modules and genetic circuit architectures that faithfully encode past cellular states into genomic DNA recordings to achieve such goals. Here we review recently developed strategies to construct diverse sensors and explore how emerging synthetic biology tools may help to build molecular circuits for genomic recording of diverse cellular events.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2025.04.004\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2025.04.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Molecular circuits for genomic recording of cellular events.
Advances in precise genome editing are enabling genomic recordings of cellular events. Since the initial demonstration of CRISPR-based genome editing, the field of genomic recording has witnessed key strides in lineage recording, where clonal lineage relationships among cells are indirectly recorded as synthetic mutations. However, methods for directly recording and reconstructing past cellular events are still limited, and their potential for revealing new insights into cell fate decisions has yet to be realized. The field needs new sensing modules and genetic circuit architectures that faithfully encode past cellular states into genomic DNA recordings to achieve such goals. Here we review recently developed strategies to construct diverse sensors and explore how emerging synthetic biology tools may help to build molecular circuits for genomic recording of diverse cellular events.
期刊介绍:
Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology.
Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.