{"title":"110 kV超高压阻燃电缆护套热老化后的热降解及燃烧性能研究","authors":"Yaqiang Jiang, Wei He, Xinke Huo, Xuelian Lu, Kaiyuan Li, Fei Xiao","doi":"10.3390/polym17091273","DOIUrl":null,"url":null,"abstract":"<p><p>To evaluate the fire safety of 110 kV ultra-high-voltage flame-retardant polyvinyl chloride (PVC) cables in the service process, the effects of thermal aging on the pyrolysis and combustion behavior of the cable sheaths were studied using thermogravimetric (TG), limiting oxygen index (LOI), UL-94 vertical burning, cone calorimeter, open flame, and muffle furnace tests. The results showed that thermal aging causes a slight decrease in the LOI value of the cable sheath (28.3% vs. 28.5%), but it also passed the UL-94 V-0 test. The butane torch test showed that the cable sheath was more easily ignited after aging; however, a better char layer was formed in the later stage of burning, which led to a longer failure time. Interestingly, the aging treatment prolonged the ignition time of the cable sheaths and reduced the peak heat release rate (pHRR) and total heat release (THR) by 17.5% and 24.4%, respectively, in the cone calorimeter test, indicating that aging resulted in a reduction in the fire hazard of the cable sheaths. Moreover, aging mechanisms were proposed based on the composition and structural evolution of the cable sheaths. In summary, this work comprehensively evaluated the fire hazard of 110 kV ultra-high-voltage cables and provided theoretical support for the formulation improvement, durability enhancement, and fire protection design of cable sheath materials.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074156/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unveiling Thermal Degradation and Fire Behavior of 110 kV Ultra-High-Voltage Flame-Retardant Cable Sheath After Thermal Aging.\",\"authors\":\"Yaqiang Jiang, Wei He, Xinke Huo, Xuelian Lu, Kaiyuan Li, Fei Xiao\",\"doi\":\"10.3390/polym17091273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To evaluate the fire safety of 110 kV ultra-high-voltage flame-retardant polyvinyl chloride (PVC) cables in the service process, the effects of thermal aging on the pyrolysis and combustion behavior of the cable sheaths were studied using thermogravimetric (TG), limiting oxygen index (LOI), UL-94 vertical burning, cone calorimeter, open flame, and muffle furnace tests. The results showed that thermal aging causes a slight decrease in the LOI value of the cable sheath (28.3% vs. 28.5%), but it also passed the UL-94 V-0 test. The butane torch test showed that the cable sheath was more easily ignited after aging; however, a better char layer was formed in the later stage of burning, which led to a longer failure time. Interestingly, the aging treatment prolonged the ignition time of the cable sheaths and reduced the peak heat release rate (pHRR) and total heat release (THR) by 17.5% and 24.4%, respectively, in the cone calorimeter test, indicating that aging resulted in a reduction in the fire hazard of the cable sheaths. Moreover, aging mechanisms were proposed based on the composition and structural evolution of the cable sheaths. In summary, this work comprehensively evaluated the fire hazard of 110 kV ultra-high-voltage cables and provided theoretical support for the formulation improvement, durability enhancement, and fire protection design of cable sheath materials.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074156/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17091273\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17091273","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
摘要
为评价110 kV超高压阻燃聚氯乙烯(PVC)电缆在使用过程中的防火安全性,采用热重法(TG)、极限氧指数(LOI)、UL-94垂直燃烧、锥形量热计、明火和马弗炉试验,研究了热老化对电缆护套热解和燃烧行为的影响。结果表明,热老化使电缆护套的LOI值略有下降(28.3% vs. 28.5%),但也通过了UL-94 V-0测试。丁烷炬试验表明,电缆护套老化后更容易被点燃;然而,在燃烧后期形成了较好的炭层,导致了较长的失效时间。在锥形量热计试验中,时效处理延长了电缆护套的着火时间,峰值放热率(pHRR)和总放热率(THR)分别降低了17.5%和24.4%,表明时效处理降低了电缆护套的火灾危险性。根据电缆护套的组成和结构演变,提出了电缆护套的老化机理。综上所述,本工作对110 kV超高压电缆的火灾危险性进行了综合评价,为电缆护套材料的配方改进、耐久性增强和防火设计提供了理论支持。
Unveiling Thermal Degradation and Fire Behavior of 110 kV Ultra-High-Voltage Flame-Retardant Cable Sheath After Thermal Aging.
To evaluate the fire safety of 110 kV ultra-high-voltage flame-retardant polyvinyl chloride (PVC) cables in the service process, the effects of thermal aging on the pyrolysis and combustion behavior of the cable sheaths were studied using thermogravimetric (TG), limiting oxygen index (LOI), UL-94 vertical burning, cone calorimeter, open flame, and muffle furnace tests. The results showed that thermal aging causes a slight decrease in the LOI value of the cable sheath (28.3% vs. 28.5%), but it also passed the UL-94 V-0 test. The butane torch test showed that the cable sheath was more easily ignited after aging; however, a better char layer was formed in the later stage of burning, which led to a longer failure time. Interestingly, the aging treatment prolonged the ignition time of the cable sheaths and reduced the peak heat release rate (pHRR) and total heat release (THR) by 17.5% and 24.4%, respectively, in the cone calorimeter test, indicating that aging resulted in a reduction in the fire hazard of the cable sheaths. Moreover, aging mechanisms were proposed based on the composition and structural evolution of the cable sheaths. In summary, this work comprehensively evaluated the fire hazard of 110 kV ultra-high-voltage cables and provided theoretical support for the formulation improvement, durability enhancement, and fire protection design of cable sheath materials.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.