Kareme D Alder, Mason F Carstens, Cole E Bothun, Oliver B Dilger, Ashley N Payne, Roman Thaler, Mark E Morrey, Joaquin Sanchez-Sotelo, Daniel J Berry, Amel Dudakovic, Matthew P Abdel
{"title":"兔膝关节挛缩模型的建立。","authors":"Kareme D Alder, Mason F Carstens, Cole E Bothun, Oliver B Dilger, Ashley N Payne, Roman Thaler, Mark E Morrey, Joaquin Sanchez-Sotelo, Daniel J Berry, Amel Dudakovic, Matthew P Abdel","doi":"10.1089/ten.tec.2025.0044","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental analyses of knee joint contractures have traditionally utilized a 6-month rabbit model as the gold standard. However, this model is time-intensive and costly. The purpose of this study was to develop an abbreviated rabbit model of knee contractures and compare it to the well-established longer model. Twenty female New Zealand White rabbits were divided into two equal groups and prospectively studied to assess knee passive extension angles (PEA), contracture angles (CA), and terminal posterior capsular stiffness. Experimental knees were immobilized for either 4 weeks (<i>n</i> = 10) with an 8-week remobilization period in the abbreviated model (i.e., 3 months) or for 8 weeks (<i>n</i> = 10) with a 16-week remobilization period in the standard model (i.e., 6 months). PEAs were assessed at remobilization and several time points using differing vertical forces. At sacrifice, terminal biomechanical data were collected to assess posterior capsular stiffness. Analysis of PEAs in live animals at each torque value and time point demonstrated increased PEAs and decreased CAs in the 3-month abbreviated model as compared to the 6-month standard model. At sacrifice, biomechanical analysis demonstrated that the posterior capsules of the 3-month experimental limbs were significantly more stiff than the contralateral limb (2.4 vs. 0.05 Ncm/°, <i>p</i> < 0.0001), but significantly less stiff compared to the 6-month experimental limbs (2.4 vs. 4.7 Ncm/°, <i>p</i> < 0.0001). Our study suggests that the 6-month standard rabbit knee model of arthrofibrosis should continue to be used in the laboratory assessment of arthrofibrosis. However, the abbreviated model may be beneficial under selected experimental conditions.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":"31 4","pages":"145-152"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Abbreviated Rabbit Knee Model of Joint Contracture.\",\"authors\":\"Kareme D Alder, Mason F Carstens, Cole E Bothun, Oliver B Dilger, Ashley N Payne, Roman Thaler, Mark E Morrey, Joaquin Sanchez-Sotelo, Daniel J Berry, Amel Dudakovic, Matthew P Abdel\",\"doi\":\"10.1089/ten.tec.2025.0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Experimental analyses of knee joint contractures have traditionally utilized a 6-month rabbit model as the gold standard. However, this model is time-intensive and costly. The purpose of this study was to develop an abbreviated rabbit model of knee contractures and compare it to the well-established longer model. Twenty female New Zealand White rabbits were divided into two equal groups and prospectively studied to assess knee passive extension angles (PEA), contracture angles (CA), and terminal posterior capsular stiffness. Experimental knees were immobilized for either 4 weeks (<i>n</i> = 10) with an 8-week remobilization period in the abbreviated model (i.e., 3 months) or for 8 weeks (<i>n</i> = 10) with a 16-week remobilization period in the standard model (i.e., 6 months). PEAs were assessed at remobilization and several time points using differing vertical forces. At sacrifice, terminal biomechanical data were collected to assess posterior capsular stiffness. Analysis of PEAs in live animals at each torque value and time point demonstrated increased PEAs and decreased CAs in the 3-month abbreviated model as compared to the 6-month standard model. At sacrifice, biomechanical analysis demonstrated that the posterior capsules of the 3-month experimental limbs were significantly more stiff than the contralateral limb (2.4 vs. 0.05 Ncm/°, <i>p</i> < 0.0001), but significantly less stiff compared to the 6-month experimental limbs (2.4 vs. 4.7 Ncm/°, <i>p</i> < 0.0001). Our study suggests that the 6-month standard rabbit knee model of arthrofibrosis should continue to be used in the laboratory assessment of arthrofibrosis. However, the abbreviated model may be beneficial under selected experimental conditions.</p>\",\"PeriodicalId\":23154,\"journal\":{\"name\":\"Tissue engineering. Part C, Methods\",\"volume\":\"31 4\",\"pages\":\"145-152\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering. Part C, Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/ten.tec.2025.0044\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tec.2025.0044","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
膝关节挛缩的实验分析传统上采用6个月兔模型作为金标准。然而,这种模式既耗时又昂贵。本研究的目的是建立一个简短的兔膝挛缩模型,并将其与已建立的较长的模型进行比较。将20只雌性新西兰大白兔分为两组,进行前瞻性研究,评估膝关节被动伸角(PEA)、挛缩角(CA)和终末后囊膜刚度。在缩短模型(即3个月)中,实验膝关节固定4周(n = 10), 8周的再活动期;在标准模型(即6个月)中,固定8周(n = 10), 16周的再活动期。豌豆被评估在重新动员和几个时间点使用不同的垂直力。在牺牲时,收集末端生物力学数据以评估后囊膜刚度。在每个扭矩值和时间点对活体动物的豌豆进行分析表明,与6个月的标准模型相比,3个月的缩短模型中豌豆增加,CAs减少。在牺牲时,生物力学分析表明,3个月实验肢体的后囊明显比对侧肢体僵硬(2.4 vs. 0.05 Ncm/°,p < 0.0001),但与6个月实验肢体相比,僵硬程度明显降低(2.4 vs. 4.7 Ncm/°,p < 0.0001)。我们的研究表明,6个月标准兔膝关节关节纤维化模型应继续用于关节纤维化的实验室评估。然而,在选定的实验条件下,简化模型可能是有益的。
An Abbreviated Rabbit Knee Model of Joint Contracture.
Experimental analyses of knee joint contractures have traditionally utilized a 6-month rabbit model as the gold standard. However, this model is time-intensive and costly. The purpose of this study was to develop an abbreviated rabbit model of knee contractures and compare it to the well-established longer model. Twenty female New Zealand White rabbits were divided into two equal groups and prospectively studied to assess knee passive extension angles (PEA), contracture angles (CA), and terminal posterior capsular stiffness. Experimental knees were immobilized for either 4 weeks (n = 10) with an 8-week remobilization period in the abbreviated model (i.e., 3 months) or for 8 weeks (n = 10) with a 16-week remobilization period in the standard model (i.e., 6 months). PEAs were assessed at remobilization and several time points using differing vertical forces. At sacrifice, terminal biomechanical data were collected to assess posterior capsular stiffness. Analysis of PEAs in live animals at each torque value and time point demonstrated increased PEAs and decreased CAs in the 3-month abbreviated model as compared to the 6-month standard model. At sacrifice, biomechanical analysis demonstrated that the posterior capsules of the 3-month experimental limbs were significantly more stiff than the contralateral limb (2.4 vs. 0.05 Ncm/°, p < 0.0001), but significantly less stiff compared to the 6-month experimental limbs (2.4 vs. 4.7 Ncm/°, p < 0.0001). Our study suggests that the 6-month standard rabbit knee model of arthrofibrosis should continue to be used in the laboratory assessment of arthrofibrosis. However, the abbreviated model may be beneficial under selected experimental conditions.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.