José Luís Velázquez-Libera, Rodrigo Recabarren, Esteban Vöhringer-Martinez, Yamisleydi Salgueiro, J Javier Ruiz-Pernía, Julio Caballero, Iñaki Tuñón
{"title":"在QM/MM理论水平上改进酶促反应半经验哈密顿量的多目标进化策略。","authors":"José Luís Velázquez-Libera, Rodrigo Recabarren, Esteban Vöhringer-Martinez, Yamisleydi Salgueiro, J Javier Ruiz-Pernía, Julio Caballero, Iñaki Tuñón","doi":"10.1021/acs.jctc.5c00247","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum mechanics/molecular mechanics (QM/MM) simulations are crucial for understanding enzymatic reactions, but their accuracy depends heavily on the quantum-mechanical method used. Semiempirical methods offer computational efficiency but often struggle with accuracy in complex systems. This work presents a novel multiobjective evolutionary strategy for optimizing semiempirical Hamiltonians, specifically designed to enhance their performance in enzymatic QM/MM simulations while remaining broadly applicable to condensed-phase systems. Our methodology combines automated parameter optimization, targeting ab initio or density functional theory (DFT)-reference potential energy surfaces, atomic charges, and gradients, with comprehensive validation through minimum free energy path (MFEP) calculations. To demonstrate its effectiveness, we applied our approach to improve the GFN2-xTB Hamiltonian using two enzymatic systems that involve hydride transfer reactions where the activation energy barrier is severely underestimated: Crotonyl-CoA carboxylase/reductase (CCR) and dihydrofolate reductase (DHFR). The optimized parameters showed significant improvements in reproducing potential and free energy surfaces, closely matching higher-level DFT calculations. Through an efficient two-stage optimization process, we first developed parameters for CCR using reaction path data, then refined these parameters for DHFR by incorporating a targeted set of additional training geometries. This strategic approach minimized the computational cost while achieving accurate descriptions of both systems, as validated through QM/MM simulations using the Adaptive String Method (ASM). Our method represents an efficient approach for optimizing semiempirical methods to study larger systems and longer time scales, with potential applications in enzymatic reaction mechanism studies, drug design, and enzyme engineering.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"5118-5131"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiobjective Evolutionary Strategy for Improving Semiempirical Hamiltonians in the Study of Enzymatic Reactions at the QM/MM Level of Theory.\",\"authors\":\"José Luís Velázquez-Libera, Rodrigo Recabarren, Esteban Vöhringer-Martinez, Yamisleydi Salgueiro, J Javier Ruiz-Pernía, Julio Caballero, Iñaki Tuñón\",\"doi\":\"10.1021/acs.jctc.5c00247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum mechanics/molecular mechanics (QM/MM) simulations are crucial for understanding enzymatic reactions, but their accuracy depends heavily on the quantum-mechanical method used. Semiempirical methods offer computational efficiency but often struggle with accuracy in complex systems. This work presents a novel multiobjective evolutionary strategy for optimizing semiempirical Hamiltonians, specifically designed to enhance their performance in enzymatic QM/MM simulations while remaining broadly applicable to condensed-phase systems. Our methodology combines automated parameter optimization, targeting ab initio or density functional theory (DFT)-reference potential energy surfaces, atomic charges, and gradients, with comprehensive validation through minimum free energy path (MFEP) calculations. To demonstrate its effectiveness, we applied our approach to improve the GFN2-xTB Hamiltonian using two enzymatic systems that involve hydride transfer reactions where the activation energy barrier is severely underestimated: Crotonyl-CoA carboxylase/reductase (CCR) and dihydrofolate reductase (DHFR). The optimized parameters showed significant improvements in reproducing potential and free energy surfaces, closely matching higher-level DFT calculations. Through an efficient two-stage optimization process, we first developed parameters for CCR using reaction path data, then refined these parameters for DHFR by incorporating a targeted set of additional training geometries. This strategic approach minimized the computational cost while achieving accurate descriptions of both systems, as validated through QM/MM simulations using the Adaptive String Method (ASM). Our method represents an efficient approach for optimizing semiempirical methods to study larger systems and longer time scales, with potential applications in enzymatic reaction mechanism studies, drug design, and enzyme engineering.</p>\",\"PeriodicalId\":45,\"journal\":{\"name\":\"Journal of Chemical Theory and Computation\",\"volume\":\" \",\"pages\":\"5118-5131\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Theory and Computation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jctc.5c00247\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00247","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Multiobjective Evolutionary Strategy for Improving Semiempirical Hamiltonians in the Study of Enzymatic Reactions at the QM/MM Level of Theory.
Quantum mechanics/molecular mechanics (QM/MM) simulations are crucial for understanding enzymatic reactions, but their accuracy depends heavily on the quantum-mechanical method used. Semiempirical methods offer computational efficiency but often struggle with accuracy in complex systems. This work presents a novel multiobjective evolutionary strategy for optimizing semiempirical Hamiltonians, specifically designed to enhance their performance in enzymatic QM/MM simulations while remaining broadly applicable to condensed-phase systems. Our methodology combines automated parameter optimization, targeting ab initio or density functional theory (DFT)-reference potential energy surfaces, atomic charges, and gradients, with comprehensive validation through minimum free energy path (MFEP) calculations. To demonstrate its effectiveness, we applied our approach to improve the GFN2-xTB Hamiltonian using two enzymatic systems that involve hydride transfer reactions where the activation energy barrier is severely underestimated: Crotonyl-CoA carboxylase/reductase (CCR) and dihydrofolate reductase (DHFR). The optimized parameters showed significant improvements in reproducing potential and free energy surfaces, closely matching higher-level DFT calculations. Through an efficient two-stage optimization process, we first developed parameters for CCR using reaction path data, then refined these parameters for DHFR by incorporating a targeted set of additional training geometries. This strategic approach minimized the computational cost while achieving accurate descriptions of both systems, as validated through QM/MM simulations using the Adaptive String Method (ASM). Our method represents an efficient approach for optimizing semiempirical methods to study larger systems and longer time scales, with potential applications in enzymatic reaction mechanism studies, drug design, and enzyme engineering.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.