CEP72成为健康和疾病中的关键中心粒卫星蛋白

Shweta Tyagi, Aditi Arora, Prajnya Ranganath, Ashwin Dalal
{"title":"CEP72成为健康和疾病中的关键中心粒卫星蛋白","authors":"Shweta Tyagi, Aditi Arora, Prajnya Ranganath, Ashwin Dalal","doi":"10.1002/cm.22030","DOIUrl":null,"url":null,"abstract":"<p><p>Centriolar satellites are membrane-less granules that are now accepted as core structural and functional components of the centrosomes and the cilia. While initially associated with centrosome assembly and primary cilia formation, these complexes and their dynamic structures seem to be involved in various other cellular processes, including protein homeostasis, autophagy, and responses to cellular stress. Since the identification of the first centriolar satellite protein, PCM1, substantial progress has been made in understanding the molecular composition and biological functions of centriolar satellites. Here, we review the function of a centriolar satellite protein CEP72, which is emerging as a key component of many essential processes associated with centrosomes and cilia. We describe the complexes it associates with, their function, and the genetic mutations that implicate CEP72 in a range of human disorders.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CEP72 Emerges as a Key Centriolar Satellite Protein in Health and Disease.\",\"authors\":\"Shweta Tyagi, Aditi Arora, Prajnya Ranganath, Ashwin Dalal\",\"doi\":\"10.1002/cm.22030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Centriolar satellites are membrane-less granules that are now accepted as core structural and functional components of the centrosomes and the cilia. While initially associated with centrosome assembly and primary cilia formation, these complexes and their dynamic structures seem to be involved in various other cellular processes, including protein homeostasis, autophagy, and responses to cellular stress. Since the identification of the first centriolar satellite protein, PCM1, substantial progress has been made in understanding the molecular composition and biological functions of centriolar satellites. Here, we review the function of a centriolar satellite protein CEP72, which is emerging as a key component of many essential processes associated with centrosomes and cilia. We describe the complexes it associates with, their function, and the genetic mutations that implicate CEP72 in a range of human disorders.</p>\",\"PeriodicalId\":72766,\"journal\":{\"name\":\"Cytoskeleton (Hoboken, N.J.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytoskeleton (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cm.22030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.22030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

向心卫星是无膜颗粒,现在被认为是中心体和纤毛的核心结构和功能成分。虽然最初与中心体组装和初级纤毛形成有关,但这些复合物及其动态结构似乎参与了各种其他细胞过程,包括蛋白质稳态、自噬和对细胞应激的反应。自首个向心卫星蛋白PCM1被发现以来,对向心卫星的分子组成和生物学功能的了解取得了实质性进展。在这里,我们回顾了中心粒卫星蛋白CEP72的功能,它是与中心体和纤毛相关的许多重要过程的关键组成部分。我们描述了与CEP72相关的复合物,它们的功能,以及在一系列人类疾病中涉及CEP72的基因突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CEP72 Emerges as a Key Centriolar Satellite Protein in Health and Disease.

Centriolar satellites are membrane-less granules that are now accepted as core structural and functional components of the centrosomes and the cilia. While initially associated with centrosome assembly and primary cilia formation, these complexes and their dynamic structures seem to be involved in various other cellular processes, including protein homeostasis, autophagy, and responses to cellular stress. Since the identification of the first centriolar satellite protein, PCM1, substantial progress has been made in understanding the molecular composition and biological functions of centriolar satellites. Here, we review the function of a centriolar satellite protein CEP72, which is emerging as a key component of many essential processes associated with centrosomes and cilia. We describe the complexes it associates with, their function, and the genetic mutations that implicate CEP72 in a range of human disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信