基因组分析真的能估计过去的人口规模吗?

IF 16.3 2区 生物学 Q1 GENETICS & HEREDITY
Trends in Genetics Pub Date : 2025-07-01 Epub Date: 2025-04-25 DOI:10.1016/j.tig.2025.03.003
Janeesh K Bansal, Richard A Nichols
{"title":"基因组分析真的能估计过去的人口规模吗?","authors":"Janeesh K Bansal, Richard A Nichols","doi":"10.1016/j.tig.2025.03.003","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic data can be used to reconstruct population size over thousands of generations, using a new class of algorithms [sequentially Markovian coalescent (SMC) methods]. These analyses often show a recent decline in N<sub>e</sub> (effective size), which at face value implies a conservation or demographic crisis: a population crash and loss of genetic diversity. This interpretation is frequently mistaken. Here we outline how SMC methods work, why they generate this misleading signal, and suggest simple approaches for exploiting the rich information produced by these algorithms. In most species, genomic patterns reflect major changes in the species' range and subdivision over tens or hundreds of thousands of years. Consequently, collaboration between geneticists, palaeoecologists, palaeoclimatologists, and geologists is crucial for evaluating the outputs of SMC algorithms.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":"559-567"},"PeriodicalIF":16.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Can genomic analysis actually estimate past population size?\",\"authors\":\"Janeesh K Bansal, Richard A Nichols\",\"doi\":\"10.1016/j.tig.2025.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic data can be used to reconstruct population size over thousands of generations, using a new class of algorithms [sequentially Markovian coalescent (SMC) methods]. These analyses often show a recent decline in N<sub>e</sub> (effective size), which at face value implies a conservation or demographic crisis: a population crash and loss of genetic diversity. This interpretation is frequently mistaken. Here we outline how SMC methods work, why they generate this misleading signal, and suggest simple approaches for exploiting the rich information produced by these algorithms. In most species, genomic patterns reflect major changes in the species' range and subdivision over tens or hundreds of thousands of years. Consequently, collaboration between geneticists, palaeoecologists, palaeoclimatologists, and geologists is crucial for evaluating the outputs of SMC algorithms.</p>\",\"PeriodicalId\":54413,\"journal\":{\"name\":\"Trends in Genetics\",\"volume\":\" \",\"pages\":\"559-567\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tig.2025.03.003\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2025.03.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

使用一种新的算法[顺序马尔可夫聚结(SMC)方法],基因组数据可以用来重建数千代的种群规模。这些分析经常显示最近Ne(有效大小)的下降,从表面上看,这意味着保护或人口危机:人口崩溃和遗传多样性的丧失。这种解释经常是错误的。在这里,我们概述了SMC方法是如何工作的,为什么它们会产生这种误导性的信号,并提出了利用这些算法产生的丰富信息的简单方法。在大多数物种中,基因组模式反映了数万年或数十万年物种范围和细分的重大变化。因此,遗传学家、古生态学家、古气候学家和地质学家之间的合作对于评估SMC算法的输出至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can genomic analysis actually estimate past population size?

Genomic data can be used to reconstruct population size over thousands of generations, using a new class of algorithms [sequentially Markovian coalescent (SMC) methods]. These analyses often show a recent decline in Ne (effective size), which at face value implies a conservation or demographic crisis: a population crash and loss of genetic diversity. This interpretation is frequently mistaken. Here we outline how SMC methods work, why they generate this misleading signal, and suggest simple approaches for exploiting the rich information produced by these algorithms. In most species, genomic patterns reflect major changes in the species' range and subdivision over tens or hundreds of thousands of years. Consequently, collaboration between geneticists, palaeoecologists, palaeoclimatologists, and geologists is crucial for evaluating the outputs of SMC algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Genetics
Trends in Genetics 生物-遗传学
CiteScore
20.90
自引率
0.90%
发文量
160
审稿时长
6-12 weeks
期刊介绍: Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology. Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信