{"title":"利用多频阻抗分析和Cole-Cole模型拟合评估电极-组织接触。","authors":"Mengying Zhan, Haitao Yao, Qijun Xie, Yingxi Wang, Yu Zhou","doi":"10.1177/09544119251330742","DOIUrl":null,"url":null,"abstract":"<p><p>Atrial fibrillation (AF) is a common cardiac arrhythmia, and ablation is the primary treatment for patients with drug intolerance. The success of AF ablation depends on the adhesion of the catheter to the tissue. Existing electrical coupling index (ECI) and electrode-interface resistance (IR) methods based on impedance measurement to evaluate the adhesion between catheters and tissues do not explore the internal changes of the tissue during the compression process. This study introduces a new method to understand these internal changes using multi-frequency impedance combined with Cole-Cole model fitting, which is critical for accurate characterization of the contact between catheter and tissue. We used four-electrodes impedance measurement, using customized circuits and compression platform, applying 5-400 g (3.6-228.2 Pa) pressure to the bullfrog thighs to collect impedance data at frequencies of 500-100 kHz. The Cole-Cole model was then used for data fitting and analysis. The customized circuit accurately detects impedance up to 2 kΩ with less than 5% amplitude error, less than 15% phase error, and less than 6% error in model component values. Correlation analysis showed a significant linear relationship between extracellular fluid resistance and applied pressure (Pearson <i>R</i> ≈ 0.9, <i>p</i> < 0.05), indicating that extracellular fluid resistance increases with compression. This suggests that there is a significant linear positive correlation between the extracellular fluid resistance and the applied pressure, meaning that as the pressure increases, the extracellular fluid resistance correspondingly rises. This may provide a new perspective for studying the degree of catheter-tissue contact during atrial fibrillation ablation procedures.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":"239 4","pages":"370-380"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of electrode-tissue contact using multifrequency impedance analysis and Cole-Cole model fitting.\",\"authors\":\"Mengying Zhan, Haitao Yao, Qijun Xie, Yingxi Wang, Yu Zhou\",\"doi\":\"10.1177/09544119251330742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atrial fibrillation (AF) is a common cardiac arrhythmia, and ablation is the primary treatment for patients with drug intolerance. The success of AF ablation depends on the adhesion of the catheter to the tissue. Existing electrical coupling index (ECI) and electrode-interface resistance (IR) methods based on impedance measurement to evaluate the adhesion between catheters and tissues do not explore the internal changes of the tissue during the compression process. This study introduces a new method to understand these internal changes using multi-frequency impedance combined with Cole-Cole model fitting, which is critical for accurate characterization of the contact between catheter and tissue. We used four-electrodes impedance measurement, using customized circuits and compression platform, applying 5-400 g (3.6-228.2 Pa) pressure to the bullfrog thighs to collect impedance data at frequencies of 500-100 kHz. The Cole-Cole model was then used for data fitting and analysis. The customized circuit accurately detects impedance up to 2 kΩ with less than 5% amplitude error, less than 15% phase error, and less than 6% error in model component values. Correlation analysis showed a significant linear relationship between extracellular fluid resistance and applied pressure (Pearson <i>R</i> ≈ 0.9, <i>p</i> < 0.05), indicating that extracellular fluid resistance increases with compression. This suggests that there is a significant linear positive correlation between the extracellular fluid resistance and the applied pressure, meaning that as the pressure increases, the extracellular fluid resistance correspondingly rises. This may provide a new perspective for studying the degree of catheter-tissue contact during atrial fibrillation ablation procedures.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\"239 4\",\"pages\":\"370-380\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119251330742\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251330742","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
心房颤动(AF)是一种常见的心律失常,消融术是治疗药物不耐受患者的主要方法。房颤消融的成功取决于导管与组织的粘连。现有的基于阻抗测量的电偶联指数(ECI)和电极界面电阻(IR)评价导管与组织黏着性的方法,没有探究组织在压缩过程中的内部变化。本研究引入了一种新的方法,利用多频阻抗结合Cole-Cole模型拟合来理解这些内部变化,这对于准确表征导管与组织之间的接触至关重要。我们使用四电极阻抗测量,使用定制电路和压缩平台,对牛蛙大腿施加5-400 g (3.6-228.2 Pa)的压力,以收集500-100 kHz频率的阻抗数据。然后使用Cole-Cole模型进行数据拟合和分析。定制电路精确检测阻抗高达2 kΩ,幅度误差小于5%,相位误差小于15%,模型分量值误差小于6%。相关分析显示细胞外液阻力与施加压力之间存在显著的线性关系(Pearson R≈0.9,p
Evaluation of electrode-tissue contact using multifrequency impedance analysis and Cole-Cole model fitting.
Atrial fibrillation (AF) is a common cardiac arrhythmia, and ablation is the primary treatment for patients with drug intolerance. The success of AF ablation depends on the adhesion of the catheter to the tissue. Existing electrical coupling index (ECI) and electrode-interface resistance (IR) methods based on impedance measurement to evaluate the adhesion between catheters and tissues do not explore the internal changes of the tissue during the compression process. This study introduces a new method to understand these internal changes using multi-frequency impedance combined with Cole-Cole model fitting, which is critical for accurate characterization of the contact between catheter and tissue. We used four-electrodes impedance measurement, using customized circuits and compression platform, applying 5-400 g (3.6-228.2 Pa) pressure to the bullfrog thighs to collect impedance data at frequencies of 500-100 kHz. The Cole-Cole model was then used for data fitting and analysis. The customized circuit accurately detects impedance up to 2 kΩ with less than 5% amplitude error, less than 15% phase error, and less than 6% error in model component values. Correlation analysis showed a significant linear relationship between extracellular fluid resistance and applied pressure (Pearson R ≈ 0.9, p < 0.05), indicating that extracellular fluid resistance increases with compression. This suggests that there is a significant linear positive correlation between the extracellular fluid resistance and the applied pressure, meaning that as the pressure increases, the extracellular fluid resistance correspondingly rises. This may provide a new perspective for studying the degree of catheter-tissue contact during atrial fibrillation ablation procedures.
期刊介绍:
The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.