Javier Antonio Ballesteros-Ricaurte, Ramon Fabregat, Angela Carrillo-Ramos, Carlos Parra, Andrés Moreno
{"title":"人工神经网络预测牛中新孢子病的存在。","authors":"Javier Antonio Ballesteros-Ricaurte, Ramon Fabregat, Angela Carrillo-Ramos, Carlos Parra, Andrés Moreno","doi":"10.3934/mbe.2025041","DOIUrl":null,"url":null,"abstract":"<p><p>The prediction of bovine infectious diseases is a constant challenge as generally, only laboratory data is available not allowing the study of their relationship with each disease's risk factors. The diseases neosporosis and bovine viral diarrhea, which are present in Colombia, the United States, Mexico, Brazil, and Argentina, cause reproductive problems in cattle and generate economic losses for ranchers. Although there are mathematical models that can evaluate which cattle are susceptible to these diseases, these provide limited information, maintaining the need for a model that provides information on both transmission and mechanisms for controlling the disease. In this article, a machine learning model is presented that combines laboratory data with risk factors in a neural network to predict the presence of bovine neosporosis. The proposed model was implemented with data from previous studies conducted in the municipality of Sotaquirá, Boyacá, Colombia, and obtained an accuracy of 94% in predicting the presence of the disease. It can be concluded that incorporating laboratory data into machine learning algorithms improves the prediction of the presence of these diseases. Furthermore, the proposed system not only predicts but also provides useful information for clinical decision-making, making it a valuable tool in the veterinary field.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"22 5","pages":"1140-1158"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial neural networks to predict the presence of Neosporosis in cattle.\",\"authors\":\"Javier Antonio Ballesteros-Ricaurte, Ramon Fabregat, Angela Carrillo-Ramos, Carlos Parra, Andrés Moreno\",\"doi\":\"10.3934/mbe.2025041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prediction of bovine infectious diseases is a constant challenge as generally, only laboratory data is available not allowing the study of their relationship with each disease's risk factors. The diseases neosporosis and bovine viral diarrhea, which are present in Colombia, the United States, Mexico, Brazil, and Argentina, cause reproductive problems in cattle and generate economic losses for ranchers. Although there are mathematical models that can evaluate which cattle are susceptible to these diseases, these provide limited information, maintaining the need for a model that provides information on both transmission and mechanisms for controlling the disease. In this article, a machine learning model is presented that combines laboratory data with risk factors in a neural network to predict the presence of bovine neosporosis. The proposed model was implemented with data from previous studies conducted in the municipality of Sotaquirá, Boyacá, Colombia, and obtained an accuracy of 94% in predicting the presence of the disease. It can be concluded that incorporating laboratory data into machine learning algorithms improves the prediction of the presence of these diseases. Furthermore, the proposed system not only predicts but also provides useful information for clinical decision-making, making it a valuable tool in the veterinary field.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"22 5\",\"pages\":\"1140-1158\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2025041\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2025041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Artificial neural networks to predict the presence of Neosporosis in cattle.
The prediction of bovine infectious diseases is a constant challenge as generally, only laboratory data is available not allowing the study of their relationship with each disease's risk factors. The diseases neosporosis and bovine viral diarrhea, which are present in Colombia, the United States, Mexico, Brazil, and Argentina, cause reproductive problems in cattle and generate economic losses for ranchers. Although there are mathematical models that can evaluate which cattle are susceptible to these diseases, these provide limited information, maintaining the need for a model that provides information on both transmission and mechanisms for controlling the disease. In this article, a machine learning model is presented that combines laboratory data with risk factors in a neural network to predict the presence of bovine neosporosis. The proposed model was implemented with data from previous studies conducted in the municipality of Sotaquirá, Boyacá, Colombia, and obtained an accuracy of 94% in predicting the presence of the disease. It can be concluded that incorporating laboratory data into machine learning algorithms improves the prediction of the presence of these diseases. Furthermore, the proposed system not only predicts but also provides useful information for clinical decision-making, making it a valuable tool in the veterinary field.
期刊介绍:
Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing.
MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).