Amir Sohail, Liaqat Shah, Syed Mehar Ali Shah, Adil Abbas, Shahzad Ali, Manzoor
{"title":"综合转录组学、转录因子和蛋白质相互作用揭示了水稻开花时间的调控机制。","authors":"Amir Sohail, Liaqat Shah, Syed Mehar Ali Shah, Adil Abbas, Shahzad Ali, Manzoor","doi":"10.1007/s11248-025-00439-8","DOIUrl":null,"url":null,"abstract":"<p><p>Appropriate flowering time is important for rice regional adaptation and optimum rice production, but little is known about the omics of heading date in rice. Here, we studied omics including transcriptome, proteome and transcriptional factors to identify regulatory genes related to flowering time. A total of 1402 differentially expressed genes (DEGs, 721 up-regulated and 681 down-regulated) were detected in wild and mutant. These transcripts are classified according to biological processes, cellular components, and molecular functions. Among these differentially expressed genes, many transcription factor genes demonstrated multiple regulatory pathways involved in flowering time. Gene expression analysis showed that Os03g0122600 (OsMADS50), Os08g0105000 (Ehd3), Os06g0275000 (Hd1) were expressed higher and Os06g0199500 (OsHAL3), Os06g0498800 (OsMFT1), Os08g0105000 (Ehd3), Os06g0157700 (Hd3a), and Os02g0731700 (Ghd2), were expressed lower in wild compared to mutant, which are the key genes that regulate the flowering in rice. In addition, Ghd7 interacted with Os10g30860 and Os12g08260 using yeast two-hybrid assay. We identified 28 potential Ghd7 transcriptional regulators using the transcription factor-centered yeast one hybrid (TF-Centered Y1H) assay. Taken together, this study developed a new set of genomic resources to identify and characterize genes, proteins, and motifs associated with flowering time.</p>","PeriodicalId":23258,"journal":{"name":"Transgenic Research","volume":"34 1","pages":"21"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated transcriptomic, transcriptional factors, and protein interaction reveal the regulatory mechanisms of flowering time in rice (Oryza sativa L.).\",\"authors\":\"Amir Sohail, Liaqat Shah, Syed Mehar Ali Shah, Adil Abbas, Shahzad Ali, Manzoor\",\"doi\":\"10.1007/s11248-025-00439-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Appropriate flowering time is important for rice regional adaptation and optimum rice production, but little is known about the omics of heading date in rice. Here, we studied omics including transcriptome, proteome and transcriptional factors to identify regulatory genes related to flowering time. A total of 1402 differentially expressed genes (DEGs, 721 up-regulated and 681 down-regulated) were detected in wild and mutant. These transcripts are classified according to biological processes, cellular components, and molecular functions. Among these differentially expressed genes, many transcription factor genes demonstrated multiple regulatory pathways involved in flowering time. Gene expression analysis showed that Os03g0122600 (OsMADS50), Os08g0105000 (Ehd3), Os06g0275000 (Hd1) were expressed higher and Os06g0199500 (OsHAL3), Os06g0498800 (OsMFT1), Os08g0105000 (Ehd3), Os06g0157700 (Hd3a), and Os02g0731700 (Ghd2), were expressed lower in wild compared to mutant, which are the key genes that regulate the flowering in rice. In addition, Ghd7 interacted with Os10g30860 and Os12g08260 using yeast two-hybrid assay. We identified 28 potential Ghd7 transcriptional regulators using the transcription factor-centered yeast one hybrid (TF-Centered Y1H) assay. Taken together, this study developed a new set of genomic resources to identify and characterize genes, proteins, and motifs associated with flowering time.</p>\",\"PeriodicalId\":23258,\"journal\":{\"name\":\"Transgenic Research\",\"volume\":\"34 1\",\"pages\":\"21\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transgenic Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11248-025-00439-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transgenic Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-025-00439-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Integrated transcriptomic, transcriptional factors, and protein interaction reveal the regulatory mechanisms of flowering time in rice (Oryza sativa L.).
Appropriate flowering time is important for rice regional adaptation and optimum rice production, but little is known about the omics of heading date in rice. Here, we studied omics including transcriptome, proteome and transcriptional factors to identify regulatory genes related to flowering time. A total of 1402 differentially expressed genes (DEGs, 721 up-regulated and 681 down-regulated) were detected in wild and mutant. These transcripts are classified according to biological processes, cellular components, and molecular functions. Among these differentially expressed genes, many transcription factor genes demonstrated multiple regulatory pathways involved in flowering time. Gene expression analysis showed that Os03g0122600 (OsMADS50), Os08g0105000 (Ehd3), Os06g0275000 (Hd1) were expressed higher and Os06g0199500 (OsHAL3), Os06g0498800 (OsMFT1), Os08g0105000 (Ehd3), Os06g0157700 (Hd3a), and Os02g0731700 (Ghd2), were expressed lower in wild compared to mutant, which are the key genes that regulate the flowering in rice. In addition, Ghd7 interacted with Os10g30860 and Os12g08260 using yeast two-hybrid assay. We identified 28 potential Ghd7 transcriptional regulators using the transcription factor-centered yeast one hybrid (TF-Centered Y1H) assay. Taken together, this study developed a new set of genomic resources to identify and characterize genes, proteins, and motifs associated with flowering time.
期刊介绍:
Transgenic Research focusses on transgenic and genome edited higher organisms. Manuscripts emphasizing biotechnological applications are strongly encouraged. Intellectual property, ethical issues, societal impact and regulatory aspects also fall within the scope of the journal. Transgenic Research aims to bridge the gap between fundamental and applied science in molecular biology and biotechnology for the plant and animal academic and associated industry communities.
Transgenic Research publishes
-Original Papers
-Reviews:
Should critically summarize the current state-of-the-art of the subject in a dispassionate way. Authors are requested to contact a Board Member before submission. Reviews should not be descriptive; rather they should present the most up-to-date information on the subject in a dispassionate and critical way. Perspective Reviews which can address new or controversial aspects are encouraged.
-Brief Communications:
Should report significant developments in methodology and experimental transgenic higher organisms