{"title":"Farnesoid X受体激动剂加速间充质干细胞衍生的肝细胞样细胞的铵代谢。","authors":"Yu Saito, Shuhai Chen, Tetsuya Ikemoto, Hiroki Teraoku, Shinichiro Yamada, Yuji Morine, Mitsuo Shimada","doi":"10.2152/jmi.72.54","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accelerating ammonium metabolism of hepatocyte like cells (HLCs) is critical for various functions of hepatocytes. The aim of the present study was to investigate whether Farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), accelerated ammonium metabolism of HLCs, which was derived from adipose derived mesenchymal stem cells (ADSCs).</p><p><strong>Methods: </strong>Human ADSCs were seed in flat bottom plate, then our differentiation protocol was used for 21 days. OCA treatment had been performed in Step3 for 10days. Then, 1) hepatic maturation, 2) urea cycle genes, 3) urea production, and 4) ammonium metabolism was compared depend on the presence or absence of OCA.</p><p><strong>Results: </strong>HLCs had been successfully produced for 21 days. HLCs with OCA showed significantly higher mRNA expressions of AAT than those without OCA. HLCs with OCA showed significantly higher mRNA expressions of urea cycle genes such as SLC25A13, CPS1, and OTC. Urea production was also tended to be upregulated by OCA addition. HLCs with OCA showed significantly higher clearance of NH4Cl at 6hr and 24 hr after addition of NH4Cl.</p><p><strong>Conclusion: </strong>FXR agonist, OCA, accelerates ammonium metabolism of ADSCs derived HLCs. HLCs could be one of treatment options of hepatic encephalopathy of patients with liver failure or urea cycle disorder in the future. J. Med. Invest. 72 : 54-59, February, 2025.</p>","PeriodicalId":46910,"journal":{"name":"JOURNAL OF MEDICAL INVESTIGATION","volume":"72 1.2","pages":"54-59"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Farnesoid X receptor agonist accelerates ammonium metabolism of mesenchymal stem cell-derived hepatocyte-like cells.\",\"authors\":\"Yu Saito, Shuhai Chen, Tetsuya Ikemoto, Hiroki Teraoku, Shinichiro Yamada, Yuji Morine, Mitsuo Shimada\",\"doi\":\"10.2152/jmi.72.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Accelerating ammonium metabolism of hepatocyte like cells (HLCs) is critical for various functions of hepatocytes. The aim of the present study was to investigate whether Farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), accelerated ammonium metabolism of HLCs, which was derived from adipose derived mesenchymal stem cells (ADSCs).</p><p><strong>Methods: </strong>Human ADSCs were seed in flat bottom plate, then our differentiation protocol was used for 21 days. OCA treatment had been performed in Step3 for 10days. Then, 1) hepatic maturation, 2) urea cycle genes, 3) urea production, and 4) ammonium metabolism was compared depend on the presence or absence of OCA.</p><p><strong>Results: </strong>HLCs had been successfully produced for 21 days. HLCs with OCA showed significantly higher mRNA expressions of AAT than those without OCA. HLCs with OCA showed significantly higher mRNA expressions of urea cycle genes such as SLC25A13, CPS1, and OTC. Urea production was also tended to be upregulated by OCA addition. HLCs with OCA showed significantly higher clearance of NH4Cl at 6hr and 24 hr after addition of NH4Cl.</p><p><strong>Conclusion: </strong>FXR agonist, OCA, accelerates ammonium metabolism of ADSCs derived HLCs. HLCs could be one of treatment options of hepatic encephalopathy of patients with liver failure or urea cycle disorder in the future. J. Med. Invest. 72 : 54-59, February, 2025.</p>\",\"PeriodicalId\":46910,\"journal\":{\"name\":\"JOURNAL OF MEDICAL INVESTIGATION\",\"volume\":\"72 1.2\",\"pages\":\"54-59\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF MEDICAL INVESTIGATION\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2152/jmi.72.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MEDICAL INVESTIGATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2152/jmi.72.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Farnesoid X receptor agonist accelerates ammonium metabolism of mesenchymal stem cell-derived hepatocyte-like cells.
Background: Accelerating ammonium metabolism of hepatocyte like cells (HLCs) is critical for various functions of hepatocytes. The aim of the present study was to investigate whether Farnesoid X receptor (FXR) agonist, obeticholic acid (OCA), accelerated ammonium metabolism of HLCs, which was derived from adipose derived mesenchymal stem cells (ADSCs).
Methods: Human ADSCs were seed in flat bottom plate, then our differentiation protocol was used for 21 days. OCA treatment had been performed in Step3 for 10days. Then, 1) hepatic maturation, 2) urea cycle genes, 3) urea production, and 4) ammonium metabolism was compared depend on the presence or absence of OCA.
Results: HLCs had been successfully produced for 21 days. HLCs with OCA showed significantly higher mRNA expressions of AAT than those without OCA. HLCs with OCA showed significantly higher mRNA expressions of urea cycle genes such as SLC25A13, CPS1, and OTC. Urea production was also tended to be upregulated by OCA addition. HLCs with OCA showed significantly higher clearance of NH4Cl at 6hr and 24 hr after addition of NH4Cl.
Conclusion: FXR agonist, OCA, accelerates ammonium metabolism of ADSCs derived HLCs. HLCs could be one of treatment options of hepatic encephalopathy of patients with liver failure or urea cycle disorder in the future. J. Med. Invest. 72 : 54-59, February, 2025.