利用机器学习和地理分析改进事故后交通伤害管理和应急响应系统。

IF 2.3 4区 医学 Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Boonsak Hanterdsith
{"title":"利用机器学习和地理分析改进事故后交通伤害管理和应急响应系统。","authors":"Boonsak Hanterdsith","doi":"10.1080/17457300.2025.2487632","DOIUrl":null,"url":null,"abstract":"<p><p>Traffic injuries are a major public health concern globally. This study uses machine learning (ML) and geographic analysis to analyse road traffic fatalities and improve traffic safety in Nakhon Ratchasima Province, Thailand. Data on road traffic fatalities were collected from forensic and hospital records. K-means clustering grouped death locations and identified cluster centres. The Ball Tree algorithm and Google Directions API were used to find the nearest trauma centre hospital from the injury locations. Statistical tests, including chi-square and Kruskal-Wallis, examined relationships between clusters and demographic variables. The analysis identified 181 cases, mostly males (83.43%), with a median age of 37 years. Clustering the death locations into four high-risk areas resulted in a Silhouette Score of 0.94, indicating suitable EMS locations. While no significant correlation was found with demographic variables, distinct patterns were observed in road user types. Testing the prediction performance for the nearest hospital using forty new locations yielded an accuracy, precision, recall, and F1 score of 0.90. These findings emphasize the importance of targeted interventions and resource allocation in traffic injury prevention and emergency response planning, showcasing the potential of ML and geographic analysis in enhancing traffic injury management and emergency response systems.</p>","PeriodicalId":47014,"journal":{"name":"International Journal of Injury Control and Safety Promotion","volume":"32 1","pages":"108-117"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing machine learning and geographic analysis to improve Post-crash traffic injury management and emergency response systems.\",\"authors\":\"Boonsak Hanterdsith\",\"doi\":\"10.1080/17457300.2025.2487632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traffic injuries are a major public health concern globally. This study uses machine learning (ML) and geographic analysis to analyse road traffic fatalities and improve traffic safety in Nakhon Ratchasima Province, Thailand. Data on road traffic fatalities were collected from forensic and hospital records. K-means clustering grouped death locations and identified cluster centres. The Ball Tree algorithm and Google Directions API were used to find the nearest trauma centre hospital from the injury locations. Statistical tests, including chi-square and Kruskal-Wallis, examined relationships between clusters and demographic variables. The analysis identified 181 cases, mostly males (83.43%), with a median age of 37 years. Clustering the death locations into four high-risk areas resulted in a Silhouette Score of 0.94, indicating suitable EMS locations. While no significant correlation was found with demographic variables, distinct patterns were observed in road user types. Testing the prediction performance for the nearest hospital using forty new locations yielded an accuracy, precision, recall, and F1 score of 0.90. These findings emphasize the importance of targeted interventions and resource allocation in traffic injury prevention and emergency response planning, showcasing the potential of ML and geographic analysis in enhancing traffic injury management and emergency response systems.</p>\",\"PeriodicalId\":47014,\"journal\":{\"name\":\"International Journal of Injury Control and Safety Promotion\",\"volume\":\"32 1\",\"pages\":\"108-117\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Injury Control and Safety Promotion\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17457300.2025.2487632\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Injury Control and Safety Promotion","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17457300.2025.2487632","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

交通伤害是全球一个主要的公共卫生问题。本研究使用机器学习(ML)和地理分析来分析泰国那空叻差玛省的道路交通死亡人数,并改善交通安全。道路交通死亡数据是从法医和医院记录中收集的。K-means聚类对死亡地点进行分组并确定聚类中心。使用Ball Tree算法和谷歌Directions API寻找离受伤地点最近的创伤中心医院。统计检验,包括卡方检验和Kruskal-Wallis检验了集群和人口变量之间的关系。分析发现181例,多数为男性(83.43%),中位年龄37岁。将死亡地点聚类为4个高危区域,剪影评分为0.94,表明适宜的EMS地点。虽然与人口统计学变量没有显著的相关性,但在道路使用者类型中观察到明显的模式。使用40个新位置测试最近的医院的预测性能,其准确性、精密度、召回率和F1得分为0.90。这些发现强调了有针对性的干预措施和资源分配在交通伤害预防和应急响应规划中的重要性,展示了ML和地理分析在加强交通伤害管理和应急响应系统方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing machine learning and geographic analysis to improve Post-crash traffic injury management and emergency response systems.

Traffic injuries are a major public health concern globally. This study uses machine learning (ML) and geographic analysis to analyse road traffic fatalities and improve traffic safety in Nakhon Ratchasima Province, Thailand. Data on road traffic fatalities were collected from forensic and hospital records. K-means clustering grouped death locations and identified cluster centres. The Ball Tree algorithm and Google Directions API were used to find the nearest trauma centre hospital from the injury locations. Statistical tests, including chi-square and Kruskal-Wallis, examined relationships between clusters and demographic variables. The analysis identified 181 cases, mostly males (83.43%), with a median age of 37 years. Clustering the death locations into four high-risk areas resulted in a Silhouette Score of 0.94, indicating suitable EMS locations. While no significant correlation was found with demographic variables, distinct patterns were observed in road user types. Testing the prediction performance for the nearest hospital using forty new locations yielded an accuracy, precision, recall, and F1 score of 0.90. These findings emphasize the importance of targeted interventions and resource allocation in traffic injury prevention and emergency response planning, showcasing the potential of ML and geographic analysis in enhancing traffic injury management and emergency response systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Injury Control and Safety Promotion
International Journal of Injury Control and Safety Promotion PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
4.40
自引率
13.00%
发文量
48
期刊介绍: International Journal of Injury Control and Safety Promotion (formerly Injury Control and Safety Promotion) publishes articles concerning all phases of injury control, including prevention, acute care and rehabilitation. Specifically, this journal will publish articles that for each type of injury: •describe the problem •analyse the causes and risk factors •discuss the design and evaluation of solutions •describe the implementation of effective programs and policies The journal encompasses all causes of fatal and non-fatal injury, including injuries related to: •transport •school and work •home and leisure activities •sport •violence and assault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信