{"title":"学生对在生物学入门实验课程中转移定量推理的支持和障碍的看法。","authors":"Joelle Prate, Jeremy L Hsu","doi":"10.1128/jmbe.00229-24","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative reasoning is a critical skill in biology and has been highlighted as a core competency by <i>Vision and Change</i>. Despite its importance, students often struggle to apply mathematical skills in new contexts in biology, a process called transfer of knowledge. However, the supports and barriers that students perceive for this process remain unclear. To explore this further, we interviewed undergraduate students in an introductory biology lab course about how they understand and report the transfer of quantitative skills in these courses. We then applied these themes to the Step Back, Translate, and Extend (SBTE) framework to examine student perceptions of the supports and barriers to their knowledge transfer. Students reported different supports and barriers at each level of the transfer process. At the first step of the framework, the recognition level, students reported reflecting on previous chemistry, statistics, and physics learning as helpful cues to indicate a transfer opportunity. Others, however, reported perceiving math and science as separate subjects without overlap, causing a disconnect in their recognition of transferable knowledge. In the second level of the framework, students recall previous learning. Students reported repetition and positive dispositions toward science and math as supportive factors. In contrast, gaps of time between initial learning and new contexts and negative dispositions hindered recall ability. The final level of the SBTE framework focuses on application. Students reported being better able to apply previous learning to new contexts in the biology lab when they could relate their applied skills to \"real-world\" applications, external motivating factors, and future career goals. These students also reported proactively seeking outside resources to fill gaps in their understanding. Generating data in a lab setting was also mentioned by students as both a supportive factor of application when they felt confident in their answers and a hindrance to application when they felt unsure about its accuracy.</p>","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":" ","pages":"e0022924"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Student perceptions of supports and barriers for transferring quantitative reasoning in introductory biology lab courses.\",\"authors\":\"Joelle Prate, Jeremy L Hsu\",\"doi\":\"10.1128/jmbe.00229-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative reasoning is a critical skill in biology and has been highlighted as a core competency by <i>Vision and Change</i>. Despite its importance, students often struggle to apply mathematical skills in new contexts in biology, a process called transfer of knowledge. However, the supports and barriers that students perceive for this process remain unclear. To explore this further, we interviewed undergraduate students in an introductory biology lab course about how they understand and report the transfer of quantitative skills in these courses. We then applied these themes to the Step Back, Translate, and Extend (SBTE) framework to examine student perceptions of the supports and barriers to their knowledge transfer. Students reported different supports and barriers at each level of the transfer process. At the first step of the framework, the recognition level, students reported reflecting on previous chemistry, statistics, and physics learning as helpful cues to indicate a transfer opportunity. Others, however, reported perceiving math and science as separate subjects without overlap, causing a disconnect in their recognition of transferable knowledge. In the second level of the framework, students recall previous learning. Students reported repetition and positive dispositions toward science and math as supportive factors. In contrast, gaps of time between initial learning and new contexts and negative dispositions hindered recall ability. The final level of the SBTE framework focuses on application. Students reported being better able to apply previous learning to new contexts in the biology lab when they could relate their applied skills to \\\"real-world\\\" applications, external motivating factors, and future career goals. These students also reported proactively seeking outside resources to fill gaps in their understanding. Generating data in a lab setting was also mentioned by students as both a supportive factor of application when they felt confident in their answers and a hindrance to application when they felt unsure about its accuracy.</p>\",\"PeriodicalId\":46416,\"journal\":{\"name\":\"Journal of Microbiology & Biology Education\",\"volume\":\" \",\"pages\":\"e0022924\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microbiology & Biology Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1128/jmbe.00229-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology & Biology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/jmbe.00229-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Student perceptions of supports and barriers for transferring quantitative reasoning in introductory biology lab courses.
Quantitative reasoning is a critical skill in biology and has been highlighted as a core competency by Vision and Change. Despite its importance, students often struggle to apply mathematical skills in new contexts in biology, a process called transfer of knowledge. However, the supports and barriers that students perceive for this process remain unclear. To explore this further, we interviewed undergraduate students in an introductory biology lab course about how they understand and report the transfer of quantitative skills in these courses. We then applied these themes to the Step Back, Translate, and Extend (SBTE) framework to examine student perceptions of the supports and barriers to their knowledge transfer. Students reported different supports and barriers at each level of the transfer process. At the first step of the framework, the recognition level, students reported reflecting on previous chemistry, statistics, and physics learning as helpful cues to indicate a transfer opportunity. Others, however, reported perceiving math and science as separate subjects without overlap, causing a disconnect in their recognition of transferable knowledge. In the second level of the framework, students recall previous learning. Students reported repetition and positive dispositions toward science and math as supportive factors. In contrast, gaps of time between initial learning and new contexts and negative dispositions hindered recall ability. The final level of the SBTE framework focuses on application. Students reported being better able to apply previous learning to new contexts in the biology lab when they could relate their applied skills to "real-world" applications, external motivating factors, and future career goals. These students also reported proactively seeking outside resources to fill gaps in their understanding. Generating data in a lab setting was also mentioned by students as both a supportive factor of application when they felt confident in their answers and a hindrance to application when they felt unsure about its accuracy.