基因处理相互作用对分子计数表型的概率分类。

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2025-04-09 eCollection Date: 2025-04-01 DOI:10.1371/journal.pgen.1011561
Yuriko Harigaya, Nana Matoba, Brandon D Le, Jordan M Valone, Jason L Stein, Michael I Love, William Valdar
{"title":"基因处理相互作用对分子计数表型的概率分类。","authors":"Yuriko Harigaya, Nana Matoba, Brandon D Le, Jordan M Valone, Jason L Stein, Michael I Love, William Valdar","doi":"10.1371/journal.pgen.1011561","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic variation can modulate response to treatment (G×T) or environmental stimuli (G×E), both of which can be highly consequential in biomedicine. An effective approach to identifying G×T signals and gaining insight into molecular mechanisms is mapping quantitative trait loci (QTL) of molecular count phenotypes, such as gene expression and chromatin accessibility, under multiple treatment conditions, which is termed response molecular QTL mapping. Although standard approaches evaluate the interaction between genetics and treatment conditions, they do not distinguish between meaningful interpretations such as whether a genetic effect is observed only in the treated condition or whether a genetic effect is observed always but accentuated in the treated condition. To address this gap, we have developed a downstream method for classifying response molecular QTLs into subclasses with meaningful genetic interpretations. Our method uses Bayesian model selection and assigns posterior probabilities to different types of G×T interactions for a given feature-SNP pair. We compare linear and nonlinear regression of log ⁡ -scale counts, noting that the latter accounts for an expected biological relationship between the genotype and the molecular count phenotype. Through simulation and application to existing datasets of molecular response QTLs, we show that our method provides an intuitive and well-powered framework to report and interpret G×T interactions. We provide a software package, ClassifyGxT [1].</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 4","pages":"e1011561"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021428/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probabilistic classification of gene-by-treatment interactions on molecular count phenotypes.\",\"authors\":\"Yuriko Harigaya, Nana Matoba, Brandon D Le, Jordan M Valone, Jason L Stein, Michael I Love, William Valdar\",\"doi\":\"10.1371/journal.pgen.1011561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic variation can modulate response to treatment (G×T) or environmental stimuli (G×E), both of which can be highly consequential in biomedicine. An effective approach to identifying G×T signals and gaining insight into molecular mechanisms is mapping quantitative trait loci (QTL) of molecular count phenotypes, such as gene expression and chromatin accessibility, under multiple treatment conditions, which is termed response molecular QTL mapping. Although standard approaches evaluate the interaction between genetics and treatment conditions, they do not distinguish between meaningful interpretations such as whether a genetic effect is observed only in the treated condition or whether a genetic effect is observed always but accentuated in the treated condition. To address this gap, we have developed a downstream method for classifying response molecular QTLs into subclasses with meaningful genetic interpretations. Our method uses Bayesian model selection and assigns posterior probabilities to different types of G×T interactions for a given feature-SNP pair. We compare linear and nonlinear regression of log ⁡ -scale counts, noting that the latter accounts for an expected biological relationship between the genotype and the molecular count phenotype. Through simulation and application to existing datasets of molecular response QTLs, we show that our method provides an intuitive and well-powered framework to report and interpret G×T interactions. We provide a software package, ClassifyGxT [1].</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 4\",\"pages\":\"e1011561\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12021428/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011561\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011561","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

遗传变异可以调节对治疗(G×T)或环境刺激(G×E)的反应,这两者在生物医学中都是非常重要的。识别G×T信号和深入了解分子机制的有效方法是在多种处理条件下对分子计数表型(如基因表达和染色质可及性)进行定量性状位点(QTL)定位,称为应答分子QTL定位。虽然标准方法评估遗传和治疗条件之间的相互作用,但它们并没有区分有意义的解释,例如遗传效应是否只在治疗条件下观察到,或者遗传效应是否总是被观察到,但在治疗条件下被强化。为了解决这一差距,我们开发了一种下游方法,将应答分子qtl分类为具有有意义的遗传解释的亚类。我们的方法使用贝叶斯模型选择,并为给定特征- snp对的不同类型G×T相互作用分配后验概率。我们比较了对数尺度计数的线性和非线性回归,注意到后者解释了基因型和分子计数表型之间的预期生物学关系。通过对现有分子响应qtl数据集的模拟和应用,我们表明我们的方法提供了一个直观和强大的框架来报告和解释G×T相互作用。我们提供了一个软件包,classifygxt[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic classification of gene-by-treatment interactions on molecular count phenotypes.

Genetic variation can modulate response to treatment (G×T) or environmental stimuli (G×E), both of which can be highly consequential in biomedicine. An effective approach to identifying G×T signals and gaining insight into molecular mechanisms is mapping quantitative trait loci (QTL) of molecular count phenotypes, such as gene expression and chromatin accessibility, under multiple treatment conditions, which is termed response molecular QTL mapping. Although standard approaches evaluate the interaction between genetics and treatment conditions, they do not distinguish between meaningful interpretations such as whether a genetic effect is observed only in the treated condition or whether a genetic effect is observed always but accentuated in the treated condition. To address this gap, we have developed a downstream method for classifying response molecular QTLs into subclasses with meaningful genetic interpretations. Our method uses Bayesian model selection and assigns posterior probabilities to different types of G×T interactions for a given feature-SNP pair. We compare linear and nonlinear regression of log ⁡ -scale counts, noting that the latter accounts for an expected biological relationship between the genotype and the molecular count phenotype. Through simulation and application to existing datasets of molecular response QTLs, we show that our method provides an intuitive and well-powered framework to report and interpret G×T interactions. We provide a software package, ClassifyGxT [1].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信