利用人工智能在中非共和国班吉社区一级预测潜在的结核病热点。

IF 2.8 4区 医学 Q2 INFECTIOUS DISEASES
Kobto G Koura, Sumbul Hashmi, Sonia Menon, Hervé G Gando, Aziz K Yamodo, Anne-Laure Budts, Vincent Meurrens, Saint-Cyr S Koyato Lapelou, Olivia B Mbitikon, Matthys Potgieter, Caroline Van Cauwelaert
{"title":"利用人工智能在中非共和国班吉社区一级预测潜在的结核病热点。","authors":"Kobto G Koura, Sumbul Hashmi, Sonia Menon, Hervé G Gando, Aziz K Yamodo, Anne-Laure Budts, Vincent Meurrens, Saint-Cyr S Koyato Lapelou, Olivia B Mbitikon, Matthys Potgieter, Caroline Van Cauwelaert","doi":"10.3390/tropicalmed10040093","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis (TB) is a global health challenge, particularly in the Central African Republic (CAR), which is classified as a high TB burden country. In the CAR, factors like poverty, limited healthcare access, high HIV prevalence, malnutrition, inadequate sanitation, low measles vaccination coverage, and conflict-driven crowded living conditions elevate TB risk. Improved AI-driven surveillance is hypothesized to address under-reporting and underdiagnosis. Therefore, we created an epidemiological digital representation of TB in Bangui by employing passive data collection, spatial analysis using a 100 × 100 m grid, and mapping TB treatment services. Our approach included estimating undiagnosed TB cases through the integration of TB incidence, notification rates, and diagnostic data. High-resolution predictions are achieved by subdividing the area into smaller units while considering influencing variables within the Bayesian model. By designating moderate and high-risk hotspots, the model highlighted the potential for precise resource allocation in TB control. The strength of our model lies in its adaptability to overcome challenges, although this may have been to the detriment of precision in some areas. Research is envisioned to evaluate the model's accuracy, and future research should consider exploring the integration of multidrug-resistant TB within the model.</p>","PeriodicalId":23330,"journal":{"name":"Tropical Medicine and Infectious Disease","volume":"10 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031499/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging Artificial Intelligence to Predict Potential TB Hotspots at the Community Level in Bangui, Republic of Central Africa.\",\"authors\":\"Kobto G Koura, Sumbul Hashmi, Sonia Menon, Hervé G Gando, Aziz K Yamodo, Anne-Laure Budts, Vincent Meurrens, Saint-Cyr S Koyato Lapelou, Olivia B Mbitikon, Matthys Potgieter, Caroline Van Cauwelaert\",\"doi\":\"10.3390/tropicalmed10040093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tuberculosis (TB) is a global health challenge, particularly in the Central African Republic (CAR), which is classified as a high TB burden country. In the CAR, factors like poverty, limited healthcare access, high HIV prevalence, malnutrition, inadequate sanitation, low measles vaccination coverage, and conflict-driven crowded living conditions elevate TB risk. Improved AI-driven surveillance is hypothesized to address under-reporting and underdiagnosis. Therefore, we created an epidemiological digital representation of TB in Bangui by employing passive data collection, spatial analysis using a 100 × 100 m grid, and mapping TB treatment services. Our approach included estimating undiagnosed TB cases through the integration of TB incidence, notification rates, and diagnostic data. High-resolution predictions are achieved by subdividing the area into smaller units while considering influencing variables within the Bayesian model. By designating moderate and high-risk hotspots, the model highlighted the potential for precise resource allocation in TB control. The strength of our model lies in its adaptability to overcome challenges, although this may have been to the detriment of precision in some areas. Research is envisioned to evaluate the model's accuracy, and future research should consider exploring the integration of multidrug-resistant TB within the model.</p>\",\"PeriodicalId\":23330,\"journal\":{\"name\":\"Tropical Medicine and Infectious Disease\",\"volume\":\"10 4\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031499/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Medicine and Infectious Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/tropicalmed10040093\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Medicine and Infectious Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tropicalmed10040093","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

结核病是一项全球卫生挑战,特别是在被列为结核病高负担国家的中非共和国。在中非共和国,贫困、医疗服务有限、艾滋病毒流行率高、营养不良、卫生设施不足、麻疹疫苗接种覆盖率低以及冲突导致的拥挤生活条件等因素都增加了结核病风险。假设改进人工智能驱动的监测可以解决报告不足和诊断不足的问题。因此,我们通过被动数据收集、使用100 × 100米网格的空间分析以及绘制结核病治疗服务地图,创建了班吉结核病流行病学数字表示。我们的方法包括通过整合结核病发病率、通报率和诊断数据来估计未诊断的结核病病例。通过将区域细分为更小的单元,同时考虑贝叶斯模型中的影响变量,可以实现高分辨率预测。通过指定中等和高风险热点,该模型突出了在结核病控制中精确分配资源的潜力。我们模型的优势在于它能够适应挑战,尽管这可能会损害某些领域的精度。预计研究将评估该模型的准确性,未来的研究应考虑探索将耐多药结核病纳入该模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Artificial Intelligence to Predict Potential TB Hotspots at the Community Level in Bangui, Republic of Central Africa.

Tuberculosis (TB) is a global health challenge, particularly in the Central African Republic (CAR), which is classified as a high TB burden country. In the CAR, factors like poverty, limited healthcare access, high HIV prevalence, malnutrition, inadequate sanitation, low measles vaccination coverage, and conflict-driven crowded living conditions elevate TB risk. Improved AI-driven surveillance is hypothesized to address under-reporting and underdiagnosis. Therefore, we created an epidemiological digital representation of TB in Bangui by employing passive data collection, spatial analysis using a 100 × 100 m grid, and mapping TB treatment services. Our approach included estimating undiagnosed TB cases through the integration of TB incidence, notification rates, and diagnostic data. High-resolution predictions are achieved by subdividing the area into smaller units while considering influencing variables within the Bayesian model. By designating moderate and high-risk hotspots, the model highlighted the potential for precise resource allocation in TB control. The strength of our model lies in its adaptability to overcome challenges, although this may have been to the detriment of precision in some areas. Research is envisioned to evaluate the model's accuracy, and future research should consider exploring the integration of multidrug-resistant TB within the model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Medicine and Infectious Disease
Tropical Medicine and Infectious Disease Medicine-Public Health, Environmental and Occupational Health
CiteScore
3.90
自引率
10.30%
发文量
353
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信