Natalia Mata de Los Rios, Argel Gastelum-Arellanez, Herlinda Clement, Karely Álvarez-Cruz, Diana Romero-Terrazas, Carolina Alvarado-González, Luis Carlos Hinojos-Gallardo, Gerardo Corzo, Gerardo Pável Espino-Solis
{"title":"离子通道靶向蝎子重组毒素作为新型乳腺癌治疗剂。","authors":"Natalia Mata de Los Rios, Argel Gastelum-Arellanez, Herlinda Clement, Karely Álvarez-Cruz, Diana Romero-Terrazas, Carolina Alvarado-González, Luis Carlos Hinojos-Gallardo, Gerardo Corzo, Gerardo Pável Espino-Solis","doi":"10.3390/toxins17040166","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains the leading cause of cancer-related mortality among women worldwide, with limited therapeutic efficacy due to treatment resistance and adverse effects. Emerging evidence suggests that ion channels play crucial roles in tumor progression, regulating proliferation, apoptosis, migration, and metastasis. Voltage-gated potassium (Kv) and sodium (Nav) channels have been implicated in oncogenic signaling pathways. Scorpion venom peptides, known for their selective ion-channel-blocking properties, have demonstrated promising antineoplastic activity. This study explores the potential therapeutic applications of bioactive fractions derived from <i>Chihuahuanus coahuilae</i>, in breast cancer cell lines. Through chromatographic separation, mass spectrometry, and functional assays, we assess their effects on cell viability, proliferation, and ion channel modulation. Our preliminary data suggest that these venom-derived peptides interfere with cancer cell homeostasis by altering ion fluxes, promoting apoptosis, and inhibiting metastatic traits. These findings support the therapeutic potential of ion-channel-targeting peptides as selective anticancer agents. Further investigations into their molecular mechanisms may pave the way for novel, targeted therapies with improved efficacy and specificity for breast cancer treatment.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030950/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ion-Channel-Targeting Scorpion Recombinant Toxin as Novel Therapeutic Agent for Breast Cancer.\",\"authors\":\"Natalia Mata de Los Rios, Argel Gastelum-Arellanez, Herlinda Clement, Karely Álvarez-Cruz, Diana Romero-Terrazas, Carolina Alvarado-González, Luis Carlos Hinojos-Gallardo, Gerardo Corzo, Gerardo Pável Espino-Solis\",\"doi\":\"10.3390/toxins17040166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer remains the leading cause of cancer-related mortality among women worldwide, with limited therapeutic efficacy due to treatment resistance and adverse effects. Emerging evidence suggests that ion channels play crucial roles in tumor progression, regulating proliferation, apoptosis, migration, and metastasis. Voltage-gated potassium (Kv) and sodium (Nav) channels have been implicated in oncogenic signaling pathways. Scorpion venom peptides, known for their selective ion-channel-blocking properties, have demonstrated promising antineoplastic activity. This study explores the potential therapeutic applications of bioactive fractions derived from <i>Chihuahuanus coahuilae</i>, in breast cancer cell lines. Through chromatographic separation, mass spectrometry, and functional assays, we assess their effects on cell viability, proliferation, and ion channel modulation. Our preliminary data suggest that these venom-derived peptides interfere with cancer cell homeostasis by altering ion fluxes, promoting apoptosis, and inhibiting metastatic traits. These findings support the therapeutic potential of ion-channel-targeting peptides as selective anticancer agents. Further investigations into their molecular mechanisms may pave the way for novel, targeted therapies with improved efficacy and specificity for breast cancer treatment.</p>\",\"PeriodicalId\":23119,\"journal\":{\"name\":\"Toxins\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030950/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxins\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/toxins17040166\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17040166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Ion-Channel-Targeting Scorpion Recombinant Toxin as Novel Therapeutic Agent for Breast Cancer.
Breast cancer remains the leading cause of cancer-related mortality among women worldwide, with limited therapeutic efficacy due to treatment resistance and adverse effects. Emerging evidence suggests that ion channels play crucial roles in tumor progression, regulating proliferation, apoptosis, migration, and metastasis. Voltage-gated potassium (Kv) and sodium (Nav) channels have been implicated in oncogenic signaling pathways. Scorpion venom peptides, known for their selective ion-channel-blocking properties, have demonstrated promising antineoplastic activity. This study explores the potential therapeutic applications of bioactive fractions derived from Chihuahuanus coahuilae, in breast cancer cell lines. Through chromatographic separation, mass spectrometry, and functional assays, we assess their effects on cell viability, proliferation, and ion channel modulation. Our preliminary data suggest that these venom-derived peptides interfere with cancer cell homeostasis by altering ion fluxes, promoting apoptosis, and inhibiting metastatic traits. These findings support the therapeutic potential of ion-channel-targeting peptides as selective anticancer agents. Further investigations into their molecular mechanisms may pave the way for novel, targeted therapies with improved efficacy and specificity for breast cancer treatment.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.