使用可解释的机器学习和数学模型检测阿尔茨海默病。

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Physics Pub Date : 2025-01-01 Epub Date: 2025-03-24 DOI:10.4103/jmp.jmp_128_24
Krishna Mahapatra, R Selvakumar
{"title":"使用可解释的机器学习和数学模型检测阿尔茨海默病。","authors":"Krishna Mahapatra, R Selvakumar","doi":"10.4103/jmp.jmp_128_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study proposes a novel approach combining mathematical modeling and machine learning (ML) to classify four Alzheimer's disease (AD) stages from magnetic resonance imaging (MRI) scans.</p><p><strong>Methodology: </strong>We first mapped each MRI pixel value matrix to a 2 × 2 matrix, using the techniques of forming a moment of inertia (MI) tensor, commonly used in physics to measure the mass distribution. Using the properties of the obtained inertia tensor and their eigenvalues, along with ML techniques, we classify the different stages of AD.</p><p><strong>Results: </strong>In this study, we have compared the performance of an intuitive mathematical model integrated with a machine learning approach across various ML models. Among them, the Gaussian Naïve Bayes classifier achieves the highest accuracy of 95.45%.</p><p><strong>Conclusions: </strong>Beyond improved accuracy, our method offers potential for computational efficiency due to dimensionality reduction and provides novel physical insights into AD through inertia tensor analysis.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"50 1","pages":"131-139"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detection of Alzheimer's Disease using Explainable Machine Learning and Mathematical Models.\",\"authors\":\"Krishna Mahapatra, R Selvakumar\",\"doi\":\"10.4103/jmp.jmp_128_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study proposes a novel approach combining mathematical modeling and machine learning (ML) to classify four Alzheimer's disease (AD) stages from magnetic resonance imaging (MRI) scans.</p><p><strong>Methodology: </strong>We first mapped each MRI pixel value matrix to a 2 × 2 matrix, using the techniques of forming a moment of inertia (MI) tensor, commonly used in physics to measure the mass distribution. Using the properties of the obtained inertia tensor and their eigenvalues, along with ML techniques, we classify the different stages of AD.</p><p><strong>Results: </strong>In this study, we have compared the performance of an intuitive mathematical model integrated with a machine learning approach across various ML models. Among them, the Gaussian Naïve Bayes classifier achieves the highest accuracy of 95.45%.</p><p><strong>Conclusions: </strong>Beyond improved accuracy, our method offers potential for computational efficiency due to dimensionality reduction and provides novel physical insights into AD through inertia tensor analysis.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"50 1\",\"pages\":\"131-139\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_128_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_128_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究提出了一种结合数学建模和机器学习(ML)的新方法,从磁共振成像(MRI)扫描中对阿尔茨海默病(AD)的四个阶段进行分类。方法:我们首先使用形成惯性矩(MI)张量的技术将每个MRI像素值矩阵映射到2 × 2矩阵,这在物理学中通常用于测量质量分布。利用得到的惯性张量及其特征值的性质,结合ML技术,对AD的不同阶段进行了分类。结果:在这项研究中,我们比较了直观数学模型与机器学习方法集成在各种ML模型中的性能。其中,高斯Naïve贝叶斯分类器准确率最高,达到95.45%。结论:除了提高精度之外,我们的方法还提供了由于降维而提高计算效率的潜力,并通过惯性张量分析为AD提供了新的物理见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Alzheimer's Disease using Explainable Machine Learning and Mathematical Models.

Purpose: This study proposes a novel approach combining mathematical modeling and machine learning (ML) to classify four Alzheimer's disease (AD) stages from magnetic resonance imaging (MRI) scans.

Methodology: We first mapped each MRI pixel value matrix to a 2 × 2 matrix, using the techniques of forming a moment of inertia (MI) tensor, commonly used in physics to measure the mass distribution. Using the properties of the obtained inertia tensor and their eigenvalues, along with ML techniques, we classify the different stages of AD.

Results: In this study, we have compared the performance of an intuitive mathematical model integrated with a machine learning approach across various ML models. Among them, the Gaussian Naïve Bayes classifier achieves the highest accuracy of 95.45%.

Conclusions: Beyond improved accuracy, our method offers potential for computational efficiency due to dimensionality reduction and provides novel physical insights into AD through inertia tensor analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Physics
Journal of Medical Physics RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.10
自引率
11.10%
发文量
55
审稿时长
30 weeks
期刊介绍: JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信