Sina Hasibi Taheri, Javad Mohammadpour, Ali Lalbakhsh, Slawomir Koziel, Stanislaw Szczepanski
{"title":"基于机器学习的广角扫描阵列广角阻抗匹配结构设计。","authors":"Sina Hasibi Taheri, Javad Mohammadpour, Ali Lalbakhsh, Slawomir Koziel, Stanislaw Szczepanski","doi":"10.1038/s41598-025-00310-0","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a versatile and efficient design methodology for optimizing wide-angle impedance matching (WAIM) configurations, enhancing the scanning range of arbitrary antenna arrays. The three-layered structure is modeled using the generalized scattering matrices (GSMs) of the layers, incorporating sufficient excited modes for efficient input impedance calculation. To broaden the method's applicability and meet manufacturing requirements, it also considers dielectric materials other than air between the array and WAIM. Machine learning (ML) algorithms are integrated to evaluate WAIM characteristics, reducing calculation time and resources while enhancing adaptability to new structures with minimal designer intervention. Decision Tree-based models are chosen to provide accurate prediction while minimizing the dataset preparation time. The methodology involves training a network using three ML algorithms, including decision tree, bagging, and random forest. Optimal WAIM parameters are efficiently determined using a genetic algorithm (GA). Three matching layers are designed and validated for several arrays operating at the frequency range between 9 and 11 GHz. The random forest model shows the best performance in predicting the WAIM behavior, with RMSE, [Formula: see text] scores, MAPE of 0.033, 0.916, and 2.161, respectively. Results demonstrate that the designed WAIMs effectively enhance the scanning range of both microstrip and waveguide arrays within the desired frequency range. The method achieves a calculation time of 0.3 s per angle, significantly faster than previous approaches, with a total runtime under an hour and minimal RAM usage (9.7 MB). This method offers an efficient framework for developing tools to design wide-angle scanning arrays and expand their applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"16601"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning-driven design of wide-angle impedance matching structures for wide-angle scanning arrays.\",\"authors\":\"Sina Hasibi Taheri, Javad Mohammadpour, Ali Lalbakhsh, Slawomir Koziel, Stanislaw Szczepanski\",\"doi\":\"10.1038/s41598-025-00310-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces a versatile and efficient design methodology for optimizing wide-angle impedance matching (WAIM) configurations, enhancing the scanning range of arbitrary antenna arrays. The three-layered structure is modeled using the generalized scattering matrices (GSMs) of the layers, incorporating sufficient excited modes for efficient input impedance calculation. To broaden the method's applicability and meet manufacturing requirements, it also considers dielectric materials other than air between the array and WAIM. Machine learning (ML) algorithms are integrated to evaluate WAIM characteristics, reducing calculation time and resources while enhancing adaptability to new structures with minimal designer intervention. Decision Tree-based models are chosen to provide accurate prediction while minimizing the dataset preparation time. The methodology involves training a network using three ML algorithms, including decision tree, bagging, and random forest. Optimal WAIM parameters are efficiently determined using a genetic algorithm (GA). Three matching layers are designed and validated for several arrays operating at the frequency range between 9 and 11 GHz. The random forest model shows the best performance in predicting the WAIM behavior, with RMSE, [Formula: see text] scores, MAPE of 0.033, 0.916, and 2.161, respectively. Results demonstrate that the designed WAIMs effectively enhance the scanning range of both microstrip and waveguide arrays within the desired frequency range. The method achieves a calculation time of 0.3 s per angle, significantly faster than previous approaches, with a total runtime under an hour and minimal RAM usage (9.7 MB). This method offers an efficient framework for developing tools to design wide-angle scanning arrays and expand their applications.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"16601\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12075861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-00310-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-00310-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Machine learning-driven design of wide-angle impedance matching structures for wide-angle scanning arrays.
This paper introduces a versatile and efficient design methodology for optimizing wide-angle impedance matching (WAIM) configurations, enhancing the scanning range of arbitrary antenna arrays. The three-layered structure is modeled using the generalized scattering matrices (GSMs) of the layers, incorporating sufficient excited modes for efficient input impedance calculation. To broaden the method's applicability and meet manufacturing requirements, it also considers dielectric materials other than air between the array and WAIM. Machine learning (ML) algorithms are integrated to evaluate WAIM characteristics, reducing calculation time and resources while enhancing adaptability to new structures with minimal designer intervention. Decision Tree-based models are chosen to provide accurate prediction while minimizing the dataset preparation time. The methodology involves training a network using three ML algorithms, including decision tree, bagging, and random forest. Optimal WAIM parameters are efficiently determined using a genetic algorithm (GA). Three matching layers are designed and validated for several arrays operating at the frequency range between 9 and 11 GHz. The random forest model shows the best performance in predicting the WAIM behavior, with RMSE, [Formula: see text] scores, MAPE of 0.033, 0.916, and 2.161, respectively. Results demonstrate that the designed WAIMs effectively enhance the scanning range of both microstrip and waveguide arrays within the desired frequency range. The method achieves a calculation time of 0.3 s per angle, significantly faster than previous approaches, with a total runtime under an hour and minimal RAM usage (9.7 MB). This method offers an efficient framework for developing tools to design wide-angle scanning arrays and expand their applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.