Emalee Wrightstone, Lilin Xu, Sombir Rao, Abhijit Hazra, Li Li
{"title":"橙家族蛋白:多功能伴侣塑造植物类胡萝卜素水平,质体发育,抗逆性等。","authors":"Emalee Wrightstone, Lilin Xu, Sombir Rao, Abhijit Hazra, Li Li","doi":"10.1186/s43897-025-00169-9","DOIUrl":null,"url":null,"abstract":"<p><p>ORANGE (OR) family proteins are DnaJE1 molecular chaperones ubiquitous and highly conserved in all plant species, indicating their important roles in plant growth and development. OR proteins have been found to exert multiple functions in regulating carotenoid and chlorophyll biosynthesis, plastid development, and stress tolerance, with additional functions expected to be discovered. As molecular chaperones, OR proteins directly influence the stability of their target proteins via their holdase activity and may perform other molecular roles through unknown mechanisms. Exploration of OR has uncovered novel mechanisms underlying core plant metabolism pathways and expanded our understanding of processes linked to plastid development. Continued investigation of OR family proteins will not only reveal new functions of molecular chaperones but also provide pioneering tools for crop improvement. Thus, OR family proteins offer a distinctive opportunity to comprehend molecular chaperones in modulating various metabolic and developmental processes and exemplify the importance of chaperones in crop development and adaptability. This review briefly details the history of OR family proteins, highlights recent advancements in understanding their myriad of functions, and discusses the prospects of this fascinating group of chaperones towards generating innovative, more nutritious, and resilient crops alongside other agronomically important traits.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"43"},"PeriodicalIF":10.6000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063368/pdf/","citationCount":"0","resultStr":"{\"title\":\"ORANGE family proteins: multifunctional chaperones shaping plant carotenoid level, plastid development, stress tolerance, and more.\",\"authors\":\"Emalee Wrightstone, Lilin Xu, Sombir Rao, Abhijit Hazra, Li Li\",\"doi\":\"10.1186/s43897-025-00169-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ORANGE (OR) family proteins are DnaJE1 molecular chaperones ubiquitous and highly conserved in all plant species, indicating their important roles in plant growth and development. OR proteins have been found to exert multiple functions in regulating carotenoid and chlorophyll biosynthesis, plastid development, and stress tolerance, with additional functions expected to be discovered. As molecular chaperones, OR proteins directly influence the stability of their target proteins via their holdase activity and may perform other molecular roles through unknown mechanisms. Exploration of OR has uncovered novel mechanisms underlying core plant metabolism pathways and expanded our understanding of processes linked to plastid development. Continued investigation of OR family proteins will not only reveal new functions of molecular chaperones but also provide pioneering tools for crop improvement. Thus, OR family proteins offer a distinctive opportunity to comprehend molecular chaperones in modulating various metabolic and developmental processes and exemplify the importance of chaperones in crop development and adaptability. This review briefly details the history of OR family proteins, highlights recent advancements in understanding their myriad of functions, and discusses the prospects of this fascinating group of chaperones towards generating innovative, more nutritious, and resilient crops alongside other agronomically important traits.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"5 1\",\"pages\":\"43\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063368/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-025-00169-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-025-00169-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
ORANGE family proteins: multifunctional chaperones shaping plant carotenoid level, plastid development, stress tolerance, and more.
ORANGE (OR) family proteins are DnaJE1 molecular chaperones ubiquitous and highly conserved in all plant species, indicating their important roles in plant growth and development. OR proteins have been found to exert multiple functions in regulating carotenoid and chlorophyll biosynthesis, plastid development, and stress tolerance, with additional functions expected to be discovered. As molecular chaperones, OR proteins directly influence the stability of their target proteins via their holdase activity and may perform other molecular roles through unknown mechanisms. Exploration of OR has uncovered novel mechanisms underlying core plant metabolism pathways and expanded our understanding of processes linked to plastid development. Continued investigation of OR family proteins will not only reveal new functions of molecular chaperones but also provide pioneering tools for crop improvement. Thus, OR family proteins offer a distinctive opportunity to comprehend molecular chaperones in modulating various metabolic and developmental processes and exemplify the importance of chaperones in crop development and adaptability. This review briefly details the history of OR family proteins, highlights recent advancements in understanding their myriad of functions, and discusses the prospects of this fascinating group of chaperones towards generating innovative, more nutritious, and resilient crops alongside other agronomically important traits.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.