0D杂化钙钛矿中a位阳离子序与自捕获激子发射的强相关性

IF 11.1 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Small Science Pub Date : 2024-11-22 eCollection Date: 2025-02-01 DOI:10.1002/smsc.202400443
Feier Fang, Yongwang Shen, Yu Li, Kaimin Shih, Hanlin Hu, Haizhe Zhong, Yumeng Shi, Tom Tao Wu
{"title":"0D杂化钙钛矿中a位阳离子序与自捕获激子发射的强相关性","authors":"Feier Fang, Yongwang Shen, Yu Li, Kaimin Shih, Hanlin Hu, Haizhe Zhong, Yumeng Shi, Tom Tao Wu","doi":"10.1002/smsc.202400443","DOIUrl":null,"url":null,"abstract":"<p><p>Metal halide perovskites and their derived materials have garnered significant attention as promising materials for solar cell and light-emitting applications. Among them, 0D perovskites, characterized by unique crystallographic/electronic structures with isolated metal halide octahedra, exhibit tremendous potential as light emitters with self-trapped exciton (STE). However, the modulation of STE emission characteristics in 0D perovskites primarily focuses on regulating B- or X-site elements. In this work, a lead-free compound, Sb<sup>3+</sup>-doped ((C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>NH<sub>2</sub>)<sub>3</sub>InCl<sub>6</sub> single crystal, which exhibits a high photoluminescence quantum yield, is synthesized, and with increasing temperature, the A-site organic cations undergo a transition from an ordered configuration to a disordered one, accompanied by a redshift in the STE emission. Furthermore, Hirshfeld surface calculations reveal that high temperatures enhance the thermal vibrations of SbCl<sub>6</sub> <sup>3-</sup> clusters and the octahedra distortion, which are responsible for the redshift. Since this thermally triggered transition of A-site order is reversible, it can be exploited for temperature-sensing applications. Overall, in this work, valuable insights are provided into the role of A-site cations in modulating STE emission and the design of efficient light emitters.</p>","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"5 2","pages":"2400443"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934909/pdf/","citationCount":"0","resultStr":"{\"title\":\"Strong Correlation Between A-Site Cation Order and Self-Trapped Exciton Emission in 0D Hybrid Perovskites.\",\"authors\":\"Feier Fang, Yongwang Shen, Yu Li, Kaimin Shih, Hanlin Hu, Haizhe Zhong, Yumeng Shi, Tom Tao Wu\",\"doi\":\"10.1002/smsc.202400443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal halide perovskites and their derived materials have garnered significant attention as promising materials for solar cell and light-emitting applications. Among them, 0D perovskites, characterized by unique crystallographic/electronic structures with isolated metal halide octahedra, exhibit tremendous potential as light emitters with self-trapped exciton (STE). However, the modulation of STE emission characteristics in 0D perovskites primarily focuses on regulating B- or X-site elements. In this work, a lead-free compound, Sb<sup>3+</sup>-doped ((C<sub>2</sub>H<sub>5</sub>)<sub>2</sub>NH<sub>2</sub>)<sub>3</sub>InCl<sub>6</sub> single crystal, which exhibits a high photoluminescence quantum yield, is synthesized, and with increasing temperature, the A-site organic cations undergo a transition from an ordered configuration to a disordered one, accompanied by a redshift in the STE emission. Furthermore, Hirshfeld surface calculations reveal that high temperatures enhance the thermal vibrations of SbCl<sub>6</sub> <sup>3-</sup> clusters and the octahedra distortion, which are responsible for the redshift. Since this thermally triggered transition of A-site order is reversible, it can be exploited for temperature-sensing applications. Overall, in this work, valuable insights are provided into the role of A-site cations in modulating STE emission and the design of efficient light emitters.</p>\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":\"5 2\",\"pages\":\"2400443\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11934909/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属卤化物钙钛矿及其衍生材料作为太阳能电池和发光应用的有前途的材料受到了极大的关注。其中,0D钙钛矿具有独特的晶体/电子结构,具有孤立的金属卤化物八面体,作为具有自捕获激子(STE)的发光材料具有巨大的潜力。然而,0D钙钛矿中STE发射特性的调节主要集中在B位或x位元素的调节上。本文合成了一种具有高光致发光量子产率的无铅化合物Sb3+掺杂((C2H5)2NH2)3InCl6单晶,随着温度的升高,a位有机阳离子从有序构型转变为无序构型,并伴有STE发射红移。此外,Hirshfeld表面计算表明,高温增强了SbCl6 3-团簇的热振动和八面体畸变,这是导致红移的原因。由于这种热触发的a位序转变是可逆的,因此可以用于温度传感应用。总的来说,在这项工作中,为a位阳离子在调制STE发射和高效发光体设计中的作用提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong Correlation Between A-Site Cation Order and Self-Trapped Exciton Emission in 0D Hybrid Perovskites.

Metal halide perovskites and their derived materials have garnered significant attention as promising materials for solar cell and light-emitting applications. Among them, 0D perovskites, characterized by unique crystallographic/electronic structures with isolated metal halide octahedra, exhibit tremendous potential as light emitters with self-trapped exciton (STE). However, the modulation of STE emission characteristics in 0D perovskites primarily focuses on regulating B- or X-site elements. In this work, a lead-free compound, Sb3+-doped ((C2H5)2NH2)3InCl6 single crystal, which exhibits a high photoluminescence quantum yield, is synthesized, and with increasing temperature, the A-site organic cations undergo a transition from an ordered configuration to a disordered one, accompanied by a redshift in the STE emission. Furthermore, Hirshfeld surface calculations reveal that high temperatures enhance the thermal vibrations of SbCl6 3- clusters and the octahedra distortion, which are responsible for the redshift. Since this thermally triggered transition of A-site order is reversible, it can be exploited for temperature-sensing applications. Overall, in this work, valuable insights are provided into the role of A-site cations in modulating STE emission and the design of efficient light emitters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.00
自引率
2.40%
发文量
0
期刊介绍: Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信