B Sushma, P Chinniah, P S Ramesh, Balasubbareddy Mallala
{"title":"基于优化认知神经网络的物联网健康监测系统心电信号处理与心脏病预测方法","authors":"B Sushma, P Chinniah, P S Ramesh, Balasubbareddy Mallala","doi":"10.1080/15368378.2025.2503334","DOIUrl":null,"url":null,"abstract":"<p><p>The rising prevalence of cardiac diseases necessitates advanced IoT-driven health monitoring systems for early detection and diagnosis. This study presents an efficient ECG-based cardiac disease prediction framework leveraging a multi-phase approach to enhance computational efficiency and classification accuracy. The Convolutional Lightweight Deep Auto-encoder Wiener Filter (CLDAWF) is employed for signal preprocessing, while the Quantized Discrete Haar Wavelet Transform (QD-HWT) extracts critical cardiac features, including P-wave fluctuations, QRS complex, and T-wave intervals. These refined features are classified using an optimized Epistemic Neural Network (ENN), whose parameters are fine-tuned via the Boosted Sooty Tern Optimization algorithm, improving accuracy and reducing system loss. The proposed model achieves 99.65% accuracy, demonstrating its effectiveness in real-time cardiac disease monitoring and offering a scalable, high-performance solution for IoT-based healthcare systems.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"325-347"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ECG signal processing and cardiac disease prediction approach for IoT-based health monitoring system using optimized epistemic neural network.\",\"authors\":\"B Sushma, P Chinniah, P S Ramesh, Balasubbareddy Mallala\",\"doi\":\"10.1080/15368378.2025.2503334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rising prevalence of cardiac diseases necessitates advanced IoT-driven health monitoring systems for early detection and diagnosis. This study presents an efficient ECG-based cardiac disease prediction framework leveraging a multi-phase approach to enhance computational efficiency and classification accuracy. The Convolutional Lightweight Deep Auto-encoder Wiener Filter (CLDAWF) is employed for signal preprocessing, while the Quantized Discrete Haar Wavelet Transform (QD-HWT) extracts critical cardiac features, including P-wave fluctuations, QRS complex, and T-wave intervals. These refined features are classified using an optimized Epistemic Neural Network (ENN), whose parameters are fine-tuned via the Boosted Sooty Tern Optimization algorithm, improving accuracy and reducing system loss. The proposed model achieves 99.65% accuracy, demonstrating its effectiveness in real-time cardiac disease monitoring and offering a scalable, high-performance solution for IoT-based healthcare systems.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\" \",\"pages\":\"325-347\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2025.2503334\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2025.2503334","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
An ECG signal processing and cardiac disease prediction approach for IoT-based health monitoring system using optimized epistemic neural network.
The rising prevalence of cardiac diseases necessitates advanced IoT-driven health monitoring systems for early detection and diagnosis. This study presents an efficient ECG-based cardiac disease prediction framework leveraging a multi-phase approach to enhance computational efficiency and classification accuracy. The Convolutional Lightweight Deep Auto-encoder Wiener Filter (CLDAWF) is employed for signal preprocessing, while the Quantized Discrete Haar Wavelet Transform (QD-HWT) extracts critical cardiac features, including P-wave fluctuations, QRS complex, and T-wave intervals. These refined features are classified using an optimized Epistemic Neural Network (ENN), whose parameters are fine-tuned via the Boosted Sooty Tern Optimization algorithm, improving accuracy and reducing system loss. The proposed model achieves 99.65% accuracy, demonstrating its effectiveness in real-time cardiac disease monitoring and offering a scalable, high-performance solution for IoT-based healthcare systems.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.