Qijun Du, Hongwei Jiang, Di Wu, Changlong Song, Wenqi Hu, Qinrui Lu, Chenwei Sun, Jie Liu, Guohua Wu, Shuqi Wang
{"title":"辐射激活钴基咪唑酸沸石框架用于肿瘤的综合治疗。","authors":"Qijun Du, Hongwei Jiang, Di Wu, Changlong Song, Wenqi Hu, Qinrui Lu, Chenwei Sun, Jie Liu, Guohua Wu, Shuqi Wang","doi":"10.34133/bmr.0164","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation dynamic therapy (RDT) is known to induce cancer apoptosis and death with minimal side effects and high accuracy. However, low efficiency of radiation sensitization and persistent hypoxic environment in tumors pose marked challenges for successful RDT. To address these challenges, a novel biodegradable drug delivery system was developed, using quercetin and sorafenib-loaded ZIF67 nanoparticles (QSZP NPs) coated with polydopamine. This system effectively controlled the tumor microenvironment (TME), overcame hypoxia, and was thus utilized for collaborative RDT and radiotherapy (RT). The QSZP NPs demonstrated great potential in x-ray sensitization and reactive oxygen species (ROS)-mediated effects in vitro. Furthermore, they continuously generated oxygen and increased ROS levels in the TME with x-ray irradiation to achieve RDT. In vivo studies showed that QSZP NPs had no apparent systemic toxicity and showed good therapeutic effect in a HepG2 tumor-bearing model. Due to its unique and outstanding combinational effect of RDT/RT/antiangiogenic cancer therapy, these synthesized NPs offer a promising method for radiation-based cancer treatment.</p>","PeriodicalId":93902,"journal":{"name":"Biomaterials research","volume":"29 ","pages":"0164"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997308/pdf/","citationCount":"0","resultStr":"{\"title\":\"Radiation-Activated Cobalt-Based Zeolite Imidazolate Frameworks for Tumor Multitherapy.\",\"authors\":\"Qijun Du, Hongwei Jiang, Di Wu, Changlong Song, Wenqi Hu, Qinrui Lu, Chenwei Sun, Jie Liu, Guohua Wu, Shuqi Wang\",\"doi\":\"10.34133/bmr.0164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiation dynamic therapy (RDT) is known to induce cancer apoptosis and death with minimal side effects and high accuracy. However, low efficiency of radiation sensitization and persistent hypoxic environment in tumors pose marked challenges for successful RDT. To address these challenges, a novel biodegradable drug delivery system was developed, using quercetin and sorafenib-loaded ZIF67 nanoparticles (QSZP NPs) coated with polydopamine. This system effectively controlled the tumor microenvironment (TME), overcame hypoxia, and was thus utilized for collaborative RDT and radiotherapy (RT). The QSZP NPs demonstrated great potential in x-ray sensitization and reactive oxygen species (ROS)-mediated effects in vitro. Furthermore, they continuously generated oxygen and increased ROS levels in the TME with x-ray irradiation to achieve RDT. In vivo studies showed that QSZP NPs had no apparent systemic toxicity and showed good therapeutic effect in a HepG2 tumor-bearing model. Due to its unique and outstanding combinational effect of RDT/RT/antiangiogenic cancer therapy, these synthesized NPs offer a promising method for radiation-based cancer treatment.</p>\",\"PeriodicalId\":93902,\"journal\":{\"name\":\"Biomaterials research\",\"volume\":\"29 \",\"pages\":\"0164\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997308/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmr.0164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmr.0164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Radiation-Activated Cobalt-Based Zeolite Imidazolate Frameworks for Tumor Multitherapy.
Radiation dynamic therapy (RDT) is known to induce cancer apoptosis and death with minimal side effects and high accuracy. However, low efficiency of radiation sensitization and persistent hypoxic environment in tumors pose marked challenges for successful RDT. To address these challenges, a novel biodegradable drug delivery system was developed, using quercetin and sorafenib-loaded ZIF67 nanoparticles (QSZP NPs) coated with polydopamine. This system effectively controlled the tumor microenvironment (TME), overcame hypoxia, and was thus utilized for collaborative RDT and radiotherapy (RT). The QSZP NPs demonstrated great potential in x-ray sensitization and reactive oxygen species (ROS)-mediated effects in vitro. Furthermore, they continuously generated oxygen and increased ROS levels in the TME with x-ray irradiation to achieve RDT. In vivo studies showed that QSZP NPs had no apparent systemic toxicity and showed good therapeutic effect in a HepG2 tumor-bearing model. Due to its unique and outstanding combinational effect of RDT/RT/antiangiogenic cancer therapy, these synthesized NPs offer a promising method for radiation-based cancer treatment.