Wenxuan Li , Jinghao Zhang , Yueqiu Gao , Xiaoni Kong , Xuehua Sun
{"title":"肝细胞癌的神经系统:相关性、机制、治疗意义和未来展望。","authors":"Wenxuan Li , Jinghao Zhang , Yueqiu Gao , Xiaoni Kong , Xuehua Sun","doi":"10.1016/j.bbcan.2025.189345","DOIUrl":null,"url":null,"abstract":"<div><div>Hepatocellular carcinoma (HCC) is a highly heterogeneous and complex cancer influenced by both the tumor microenvironment and multi-level regulation of the nervous system. Increasing evidence highlights critical roles of the central nervous system (CNS) and peripheral nervous system (PNS) in modulating HCC progression. Psychological stress and emotional disturbances, representing CNS dysregulation, directly accelerate tumor growth, metastasis, and impair anti-tumor immunity in HCC. PNS involvement, particularly autonomic innervation, extensively reshapes the hepatic tumor microenvironment. Specifically, sympathetic activation promotes immune suppression, tumor cell proliferation, epithelial-mesenchymal transition (EMT), and cancer stemness via β-adrenergic signaling and hypoxia-inducible factor 1-alpha (HIF-1α) stabilization, whereas parasympathetic signals generally exert anti-inflammatory and tumor-suppressive effects mediated by acetylcholine. Neurotransmitters including epinephrine, norepinephrine, dopamine, serotonin, and acetylcholine precisely regulate critical pathways such as AKT/mTOR, ERK, and NF-κB, thereby driving malignant cell behaviors, immune evasion, and chemoresistance. Neuro-targeted pharmacological interventions (e.g., SSRIs, β-blockers, dopamine antagonists) and behavioral therapies have shown efficacy in preclinical studies, underscoring their therapeutic potential. Additionally, neural-associated biomarkers like NEDD9, CNTN1, and nerve growth factor (NGF) exhibit prognostic significance, supporting their future clinical application. By systematically integrating neuroscience with oncology, this review identifies innovative neural-based therapeutic strategies, highlights key mechanistic insights, and outlines promising directions for future research and personalized clinical management of HCC.</div></div>","PeriodicalId":8782,"journal":{"name":"Biochimica et biophysica acta. Reviews on cancer","volume":"1880 3","pages":"Article 189345"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nervous system in hepatocellular carcinoma: Correlation, mechanisms, therapeutic implications, and future perspectives\",\"authors\":\"Wenxuan Li , Jinghao Zhang , Yueqiu Gao , Xiaoni Kong , Xuehua Sun\",\"doi\":\"10.1016/j.bbcan.2025.189345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hepatocellular carcinoma (HCC) is a highly heterogeneous and complex cancer influenced by both the tumor microenvironment and multi-level regulation of the nervous system. Increasing evidence highlights critical roles of the central nervous system (CNS) and peripheral nervous system (PNS) in modulating HCC progression. Psychological stress and emotional disturbances, representing CNS dysregulation, directly accelerate tumor growth, metastasis, and impair anti-tumor immunity in HCC. PNS involvement, particularly autonomic innervation, extensively reshapes the hepatic tumor microenvironment. Specifically, sympathetic activation promotes immune suppression, tumor cell proliferation, epithelial-mesenchymal transition (EMT), and cancer stemness via β-adrenergic signaling and hypoxia-inducible factor 1-alpha (HIF-1α) stabilization, whereas parasympathetic signals generally exert anti-inflammatory and tumor-suppressive effects mediated by acetylcholine. Neurotransmitters including epinephrine, norepinephrine, dopamine, serotonin, and acetylcholine precisely regulate critical pathways such as AKT/mTOR, ERK, and NF-κB, thereby driving malignant cell behaviors, immune evasion, and chemoresistance. Neuro-targeted pharmacological interventions (e.g., SSRIs, β-blockers, dopamine antagonists) and behavioral therapies have shown efficacy in preclinical studies, underscoring their therapeutic potential. Additionally, neural-associated biomarkers like NEDD9, CNTN1, and nerve growth factor (NGF) exhibit prognostic significance, supporting their future clinical application. By systematically integrating neuroscience with oncology, this review identifies innovative neural-based therapeutic strategies, highlights key mechanistic insights, and outlines promising directions for future research and personalized clinical management of HCC.</div></div>\",\"PeriodicalId\":8782,\"journal\":{\"name\":\"Biochimica et biophysica acta. Reviews on cancer\",\"volume\":\"1880 3\",\"pages\":\"Article 189345\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Reviews on cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304419X25000873\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Reviews on cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304419X25000873","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nervous system in hepatocellular carcinoma: Correlation, mechanisms, therapeutic implications, and future perspectives
Hepatocellular carcinoma (HCC) is a highly heterogeneous and complex cancer influenced by both the tumor microenvironment and multi-level regulation of the nervous system. Increasing evidence highlights critical roles of the central nervous system (CNS) and peripheral nervous system (PNS) in modulating HCC progression. Psychological stress and emotional disturbances, representing CNS dysregulation, directly accelerate tumor growth, metastasis, and impair anti-tumor immunity in HCC. PNS involvement, particularly autonomic innervation, extensively reshapes the hepatic tumor microenvironment. Specifically, sympathetic activation promotes immune suppression, tumor cell proliferation, epithelial-mesenchymal transition (EMT), and cancer stemness via β-adrenergic signaling and hypoxia-inducible factor 1-alpha (HIF-1α) stabilization, whereas parasympathetic signals generally exert anti-inflammatory and tumor-suppressive effects mediated by acetylcholine. Neurotransmitters including epinephrine, norepinephrine, dopamine, serotonin, and acetylcholine precisely regulate critical pathways such as AKT/mTOR, ERK, and NF-κB, thereby driving malignant cell behaviors, immune evasion, and chemoresistance. Neuro-targeted pharmacological interventions (e.g., SSRIs, β-blockers, dopamine antagonists) and behavioral therapies have shown efficacy in preclinical studies, underscoring their therapeutic potential. Additionally, neural-associated biomarkers like NEDD9, CNTN1, and nerve growth factor (NGF) exhibit prognostic significance, supporting their future clinical application. By systematically integrating neuroscience with oncology, this review identifies innovative neural-based therapeutic strategies, highlights key mechanistic insights, and outlines promising directions for future research and personalized clinical management of HCC.
期刊介绍:
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer encompasses the entirety of cancer biology and biochemistry, emphasizing oncogenes and tumor suppressor genes, growth-related cell cycle control signaling, carcinogenesis mechanisms, cell transformation, immunologic control mechanisms, genetics of human (mammalian) cancer, control of cell proliferation, genetic and molecular control of organismic development, rational anti-tumor drug design. It publishes mini-reviews and full reviews.