S Tanios, T Thangavel, A Eyles, R S Tegg, C R Wilson
{"title":"叶绿素代谢基因在马铃薯块茎光诱导变绿中的相对重要性。","authors":"S Tanios, T Thangavel, A Eyles, R S Tegg, C R Wilson","doi":"10.32615/ps.2025.003","DOIUrl":null,"url":null,"abstract":"<p><p>Potato tuber greening occurs due to the chlorophyll accumulation upon exposure to light, however, fundamental information on tuber chlorophyll metabolism is lacking. We measured the effect of varying light exposure (0, 48, 96, and 168 h) on chlorophyll concentration and gene expression of enzymes in the chlorophyll metabolic pathway in the potato varieties that differ in greening propensity. Greening was associated with the upregulation of genes involved in chlorophyll biosynthesis, particularly glutamyl-tRNA reductase 1, magnesium-chelatase subunit H, and magnesium-protoporphyrin IX monomethyl ester cyclase, and downregulation of genes involved in chlorophyll cycling and degradation, including chlorophyllide <i>a</i> oxygenase, and pheophorbide <i>a</i> oxygenase. Our findings suggest that relative resistance to tuber greening propensity may be due to a weaker upregulation of chlorophyll biosynthesis genes and weaker downregulation of chlorophyll degradation genes that occurs in susceptible varieties. The association of these biosynthesis and degradation genes with greening susceptibility may provide possible breeding targets for the future development of more greening-resistant varieties.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"63 1","pages":"37-45"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012421/pdf/","citationCount":"0","resultStr":"{\"title\":\"Relative importance of chlorophyll metabolic genes for light-induced greening of potato tubers.\",\"authors\":\"S Tanios, T Thangavel, A Eyles, R S Tegg, C R Wilson\",\"doi\":\"10.32615/ps.2025.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Potato tuber greening occurs due to the chlorophyll accumulation upon exposure to light, however, fundamental information on tuber chlorophyll metabolism is lacking. We measured the effect of varying light exposure (0, 48, 96, and 168 h) on chlorophyll concentration and gene expression of enzymes in the chlorophyll metabolic pathway in the potato varieties that differ in greening propensity. Greening was associated with the upregulation of genes involved in chlorophyll biosynthesis, particularly glutamyl-tRNA reductase 1, magnesium-chelatase subunit H, and magnesium-protoporphyrin IX monomethyl ester cyclase, and downregulation of genes involved in chlorophyll cycling and degradation, including chlorophyllide <i>a</i> oxygenase, and pheophorbide <i>a</i> oxygenase. Our findings suggest that relative resistance to tuber greening propensity may be due to a weaker upregulation of chlorophyll biosynthesis genes and weaker downregulation of chlorophyll degradation genes that occurs in susceptible varieties. The association of these biosynthesis and degradation genes with greening susceptibility may provide possible breeding targets for the future development of more greening-resistant varieties.</p>\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"63 1\",\"pages\":\"37-45\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012421/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2025.003\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2025.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Relative importance of chlorophyll metabolic genes for light-induced greening of potato tubers.
Potato tuber greening occurs due to the chlorophyll accumulation upon exposure to light, however, fundamental information on tuber chlorophyll metabolism is lacking. We measured the effect of varying light exposure (0, 48, 96, and 168 h) on chlorophyll concentration and gene expression of enzymes in the chlorophyll metabolic pathway in the potato varieties that differ in greening propensity. Greening was associated with the upregulation of genes involved in chlorophyll biosynthesis, particularly glutamyl-tRNA reductase 1, magnesium-chelatase subunit H, and magnesium-protoporphyrin IX monomethyl ester cyclase, and downregulation of genes involved in chlorophyll cycling and degradation, including chlorophyllide a oxygenase, and pheophorbide a oxygenase. Our findings suggest that relative resistance to tuber greening propensity may be due to a weaker upregulation of chlorophyll biosynthesis genes and weaker downregulation of chlorophyll degradation genes that occurs in susceptible varieties. The association of these biosynthesis and degradation genes with greening susceptibility may provide possible breeding targets for the future development of more greening-resistant varieties.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.