放疗中期头颈部肿瘤MRI分割的从粗到精框架。

Jing Ni, Qiulei Yao, Yanfei Liu, Haikun Qi
{"title":"放疗中期头颈部肿瘤MRI分割的从粗到精框架。","authors":"Jing Ni, Qiulei Yao, Yanfei Liu, Haikun Qi","doi":"10.1007/978-3-031-83274-1_11","DOIUrl":null,"url":null,"abstract":"<p><p>Radiotherapy is the preferred treatment modality for head and neck cancer (HNC). During the treatment, adaptive radiation therapy (ART) technology is commonly employed to account for changes in target volume and alterations in patient anatomy. This adaptability ensures that treatment remains precise and effective despite these physiological variations. Magnetic resonance imaging (MRI) provides higher-resolution soft tissue images, making it valuable in target delineation of HNC treatment. The delineation in ART should adhere to the same principles as those used in the initial delineation. Consequently, the contouring performed on MR images during ART should reference the earlier delineations for consistency and accuracy. To address this, we proposed a coarse-to-fine cascade framework based on 3D U-Net to segment mid-radiotherapy HNC from T2-weighted MRI. The model consists of two interconnected components: a coarse segmentation network and a fine segmentation network, both sharing the same architecture. In the coarse segmentation phase, different forms of prior information were used as input, including dilated pre-radiotherapy masks. In the fine segmentation phase, a resampling operation based on a bounding box focuses on the region of interest, refining the prediction with the mid-radiotherapy image to achieve the final segmentation. In our experiment, the final results were achieved with an aggregated Dice Similarity Coefficient (DSC) of 0.562, indicating that the prior information plays a crucial role in enhancing segmentation accuracy. (Team name: TNL_skd).</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"154-165"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010034/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Coarse-to-Fine Framework for Mid-Radiotherapy Head and Neck Cancer MRI Segmentation.\",\"authors\":\"Jing Ni, Qiulei Yao, Yanfei Liu, Haikun Qi\",\"doi\":\"10.1007/978-3-031-83274-1_11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiotherapy is the preferred treatment modality for head and neck cancer (HNC). During the treatment, adaptive radiation therapy (ART) technology is commonly employed to account for changes in target volume and alterations in patient anatomy. This adaptability ensures that treatment remains precise and effective despite these physiological variations. Magnetic resonance imaging (MRI) provides higher-resolution soft tissue images, making it valuable in target delineation of HNC treatment. The delineation in ART should adhere to the same principles as those used in the initial delineation. Consequently, the contouring performed on MR images during ART should reference the earlier delineations for consistency and accuracy. To address this, we proposed a coarse-to-fine cascade framework based on 3D U-Net to segment mid-radiotherapy HNC from T2-weighted MRI. The model consists of two interconnected components: a coarse segmentation network and a fine segmentation network, both sharing the same architecture. In the coarse segmentation phase, different forms of prior information were used as input, including dilated pre-radiotherapy masks. In the fine segmentation phase, a resampling operation based on a bounding box focuses on the region of interest, refining the prediction with the mid-radiotherapy image to achieve the final segmentation. In our experiment, the final results were achieved with an aggregated Dice Similarity Coefficient (DSC) of 0.562, indicating that the prior information plays a crucial role in enhancing segmentation accuracy. (Team name: TNL_skd).</p>\",\"PeriodicalId\":520475,\"journal\":{\"name\":\"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings\",\"volume\":\"15273 \",\"pages\":\"154-165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12010034/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-83274-1_11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-83274-1_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

放疗是头颈癌(HNC)的首选治疗方式。在治疗过程中,适应性放射治疗(ART)技术通常用于解释靶体积的变化和患者解剖结构的改变。这种适应性确保了尽管存在这些生理变化,治疗仍然精确有效。磁共振成像(MRI)提供更高分辨率的软组织图像,使其在HNC治疗的目标描绘中具有价值。抗逆转录病毒治疗的界定应遵循与最初界定时相同的原则。因此,在ART期间对MR图像进行的轮廓应该参考先前的描述以保持一致性和准确性。为了解决这个问题,我们提出了一个基于3D U-Net的粗到细级联框架,以从t2加权MRI中分割放射治疗中期HNC。该模型由两个相互连接的部分组成:粗分割网络和细分割网络,两者具有相同的体系结构。在粗分割阶段,使用不同形式的先验信息作为输入,包括扩张的放疗前面罩。在精细分割阶段,基于边界框的重采样操作聚焦感兴趣区域,利用放射治疗中期图像对预测进行细化,实现最终分割。在我们的实验中,最终得到的结果是聚合骰子相似系数(DSC)为0.562,表明先验信息在提高分割精度方面起着至关重要的作用。(团队名称:TNL_skd)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Coarse-to-Fine Framework for Mid-Radiotherapy Head and Neck Cancer MRI Segmentation.

Radiotherapy is the preferred treatment modality for head and neck cancer (HNC). During the treatment, adaptive radiation therapy (ART) technology is commonly employed to account for changes in target volume and alterations in patient anatomy. This adaptability ensures that treatment remains precise and effective despite these physiological variations. Magnetic resonance imaging (MRI) provides higher-resolution soft tissue images, making it valuable in target delineation of HNC treatment. The delineation in ART should adhere to the same principles as those used in the initial delineation. Consequently, the contouring performed on MR images during ART should reference the earlier delineations for consistency and accuracy. To address this, we proposed a coarse-to-fine cascade framework based on 3D U-Net to segment mid-radiotherapy HNC from T2-weighted MRI. The model consists of two interconnected components: a coarse segmentation network and a fine segmentation network, both sharing the same architecture. In the coarse segmentation phase, different forms of prior information were used as input, including dilated pre-radiotherapy masks. In the fine segmentation phase, a resampling operation based on a bounding box focuses on the region of interest, refining the prediction with the mid-radiotherapy image to achieve the final segmentation. In our experiment, the final results were achieved with an aggregated Dice Similarity Coefficient (DSC) of 0.562, indicating that the prior information plays a crucial role in enhancing segmentation accuracy. (Team name: TNL_skd).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信