由咖啡酸和多巴胺偶联的猪心包制成的儿茶酚交联生物假瓣膜具有增强的抗血栓、免疫调节和抗钙化性能。

Lepeng Chen, Bangquan Wei, Xueyu Huang, Li Yang, Rifang Luo, Cheng Zheng, Yunbing Wang
{"title":"由咖啡酸和多巴胺偶联的猪心包制成的儿茶酚交联生物假瓣膜具有增强的抗血栓、免疫调节和抗钙化性能。","authors":"Lepeng Chen, Bangquan Wei, Xueyu Huang, Li Yang, Rifang Luo, Cheng Zheng, Yunbing Wang","doi":"10.1016/j.actbio.2025.04.054","DOIUrl":null,"url":null,"abstract":"<p><p>The global aging population has led to an increasing prevalence of valvular heart disease (VHD), and the clinical application of bioprosthetic heart valves (BHVs) are growing with the advancement of transcatheter heart valve replacement surgery. However, BHVs, as xenogeneic pericardial tissue crosslinked with glutaraldehyde, have been affected by suboptimal cytocompatibility, thrombosis, immune response, and calcification, leading to premature degeneration and failure. Herein, a catechol-crosslinking strategy for BHVs was developed by conjugating porcine pericardia (PP) with catechols and subsequently coupling the grafted catechols to achieve the crosslinking and stabilization of BHVs. Caffeic acid and dopamine were exploited to conjugate the bioactive catechols on PP through amide condensation, and the catechols were further coupled under oxidation to impart the PP with enhanced stability and cytocompatibility as well as comparable mechanical properties to those of glutaraldehyde crosslinked PP (GLUT-PP). With the enrichment of catechols, the crosslinked PP not only demonstrated improved hydrophilicity to resist the blood components adhesion and thrombosis, but also enhanced the performance of endothelialization and antioxidation. Furthermore, the introduced catechols exhibits favorable anti-inflammatory properties, which significantly ameliorated the foreign body response and regulated the local immune responses of crosslinked PP. In conclusion, the catechol crosslinked PP is expected to be explored as a potential substitute for GLUT-PP to extend the lifespan of BHVs. STATEMENT OF SIGNIFICANCE: Bioprosthetic heart valves (BHVs) are mainly prepared from glutaraldehyde crosslinked porcine or bovine pericardia (GLUT-PP). Currently, BHVs are affected by cytotoxicity, thrombosis, calcification, and immunoinflammatory responses, which would accelerate degeneration and failure of BHVs. In this study, we developed a catechol crosslinking strategy for BHVs and engineered caffeic acid and dopamine-conjugated porcine pericardia (PP). In summary, catechol crosslinked porcine pericardia demonstrated enhanced collagen stability, antithrombosis, endothelialization, anticalcification and immunomodulation which reduced the risk of structural degeneration, suggesting that the catechol crosslinked porcine pericardia could serve as a potential alternative to GLUT-PP.</p>","PeriodicalId":93848,"journal":{"name":"Acta biomaterialia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catechol crosslinked bioprosthetic valves derived from caffeic acid and dopamine-conjugated porcine pericardia exhibit enhanced antithrombotic, immunomodulatory and anticalcification performance.\",\"authors\":\"Lepeng Chen, Bangquan Wei, Xueyu Huang, Li Yang, Rifang Luo, Cheng Zheng, Yunbing Wang\",\"doi\":\"10.1016/j.actbio.2025.04.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global aging population has led to an increasing prevalence of valvular heart disease (VHD), and the clinical application of bioprosthetic heart valves (BHVs) are growing with the advancement of transcatheter heart valve replacement surgery. However, BHVs, as xenogeneic pericardial tissue crosslinked with glutaraldehyde, have been affected by suboptimal cytocompatibility, thrombosis, immune response, and calcification, leading to premature degeneration and failure. Herein, a catechol-crosslinking strategy for BHVs was developed by conjugating porcine pericardia (PP) with catechols and subsequently coupling the grafted catechols to achieve the crosslinking and stabilization of BHVs. Caffeic acid and dopamine were exploited to conjugate the bioactive catechols on PP through amide condensation, and the catechols were further coupled under oxidation to impart the PP with enhanced stability and cytocompatibility as well as comparable mechanical properties to those of glutaraldehyde crosslinked PP (GLUT-PP). With the enrichment of catechols, the crosslinked PP not only demonstrated improved hydrophilicity to resist the blood components adhesion and thrombosis, but also enhanced the performance of endothelialization and antioxidation. Furthermore, the introduced catechols exhibits favorable anti-inflammatory properties, which significantly ameliorated the foreign body response and regulated the local immune responses of crosslinked PP. In conclusion, the catechol crosslinked PP is expected to be explored as a potential substitute for GLUT-PP to extend the lifespan of BHVs. STATEMENT OF SIGNIFICANCE: Bioprosthetic heart valves (BHVs) are mainly prepared from glutaraldehyde crosslinked porcine or bovine pericardia (GLUT-PP). Currently, BHVs are affected by cytotoxicity, thrombosis, calcification, and immunoinflammatory responses, which would accelerate degeneration and failure of BHVs. In this study, we developed a catechol crosslinking strategy for BHVs and engineered caffeic acid and dopamine-conjugated porcine pericardia (PP). In summary, catechol crosslinked porcine pericardia demonstrated enhanced collagen stability, antithrombosis, endothelialization, anticalcification and immunomodulation which reduced the risk of structural degeneration, suggesting that the catechol crosslinked porcine pericardia could serve as a potential alternative to GLUT-PP.</p>\",\"PeriodicalId\":93848,\"journal\":{\"name\":\"Acta biomaterialia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta biomaterialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actbio.2025.04.054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biomaterialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.actbio.2025.04.054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球人口老龄化导致瓣膜性心脏病(VHD)患病率上升,随着经导管心脏瓣膜置换术的进展,生物人工心脏瓣膜(bhv)的临床应用日益增多。然而,作为与戊二醛交联的异种心包组织,bhv受到细胞相容性不佳、血栓形成、免疫反应和钙化的影响,导致过早变性和衰竭。本研究通过将猪心包(PP)与儿茶酚偶联,并随后偶联嫁接的儿茶酚来实现bhv的交联和稳定,从而开发了一种儿茶酚-交联策略。利用咖啡酸和多巴胺通过酰胺缩合将生物活性儿茶酚偶联在PP上,儿茶酚在氧化下进一步偶联,使PP具有更强的稳定性和细胞相容性,并具有与戊二醛交联PP (GLUT-PP)相当的力学性能。随着儿茶酚的富集,交联PP不仅表现出更好的亲水性,抵抗血液成分的粘附和血栓形成,而且还增强了内皮化和抗氧化性能。此外,引入的儿茶酚具有良好的抗炎特性,可显著改善交联PP的异物反应并调节局部免疫反应。综上所述,儿茶酚交联PP有望作为谷氨酸-聚丙烯的潜在替代品来延长bhv的寿命。意义声明:生物人工心脏瓣膜(bhv)主要由戊二醛交联的猪或牛心包(GLUT-PP)制备。目前,bhv受到细胞毒性、血栓形成、钙化和免疫炎症反应的影响,这些会加速bhv的变性和衰竭。在这项研究中,我们开发了bhv和工程咖啡酸和多巴胺偶联猪心包(PP)的儿茶酚交联策略。综上所述,儿茶酚交联的猪心包具有增强胶原稳定性、抗血栓形成、内皮化、抗钙化和免疫调节功能,降低了结构变性的风险,表明儿茶酚交联的猪心包可以作为谷氨酸-聚丙烯酰胺的潜在替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catechol crosslinked bioprosthetic valves derived from caffeic acid and dopamine-conjugated porcine pericardia exhibit enhanced antithrombotic, immunomodulatory and anticalcification performance.

The global aging population has led to an increasing prevalence of valvular heart disease (VHD), and the clinical application of bioprosthetic heart valves (BHVs) are growing with the advancement of transcatheter heart valve replacement surgery. However, BHVs, as xenogeneic pericardial tissue crosslinked with glutaraldehyde, have been affected by suboptimal cytocompatibility, thrombosis, immune response, and calcification, leading to premature degeneration and failure. Herein, a catechol-crosslinking strategy for BHVs was developed by conjugating porcine pericardia (PP) with catechols and subsequently coupling the grafted catechols to achieve the crosslinking and stabilization of BHVs. Caffeic acid and dopamine were exploited to conjugate the bioactive catechols on PP through amide condensation, and the catechols were further coupled under oxidation to impart the PP with enhanced stability and cytocompatibility as well as comparable mechanical properties to those of glutaraldehyde crosslinked PP (GLUT-PP). With the enrichment of catechols, the crosslinked PP not only demonstrated improved hydrophilicity to resist the blood components adhesion and thrombosis, but also enhanced the performance of endothelialization and antioxidation. Furthermore, the introduced catechols exhibits favorable anti-inflammatory properties, which significantly ameliorated the foreign body response and regulated the local immune responses of crosslinked PP. In conclusion, the catechol crosslinked PP is expected to be explored as a potential substitute for GLUT-PP to extend the lifespan of BHVs. STATEMENT OF SIGNIFICANCE: Bioprosthetic heart valves (BHVs) are mainly prepared from glutaraldehyde crosslinked porcine or bovine pericardia (GLUT-PP). Currently, BHVs are affected by cytotoxicity, thrombosis, calcification, and immunoinflammatory responses, which would accelerate degeneration and failure of BHVs. In this study, we developed a catechol crosslinking strategy for BHVs and engineered caffeic acid and dopamine-conjugated porcine pericardia (PP). In summary, catechol crosslinked porcine pericardia demonstrated enhanced collagen stability, antithrombosis, endothelialization, anticalcification and immunomodulation which reduced the risk of structural degeneration, suggesting that the catechol crosslinked porcine pericardia could serve as a potential alternative to GLUT-PP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信