纳米ZnO材料的合成及其光催化应用综述。

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2025-04-30 DOI:10.3390/nano15090682
Chunxiang Zhu, Xihui Wang
{"title":"纳米ZnO材料的合成及其光催化应用综述。","authors":"Chunxiang Zhu, Xihui Wang","doi":"10.3390/nano15090682","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc oxide (ZnO), a cheap, abundant, biocompatible, and wide band gap semiconductor material with easy tunable morphologies and properties, makes it one of the mostly studied metal oxides in the area of materials science, physics, chemistry, biochemistry, and solid-state electronics. Its versatility, easy bandgap engineering with transitional and rare earth metals, as well as the diverse nanomorphology empower ZnO as a promising photocatalyst. The use of ZnO as a functional material is attracting increased attention both for academia and industry, especially under the current energy paradigm shift toward clean and renewable sources. Extensive work has been performed in recent years using ZnO as an active component for different photocatalytic applications. Therefore, a thorough and timely review of the process is necessary. The aim of this review is to provide a general summary of the current state of ZnO nanostructures, synthesis strategies, and modification approaches, with the main application focus on varied photocatalysis applications, serving as an introduction, a reference, and an inspiration for future research.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 9","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073315/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanomaterial ZnO Synthesis and Its Photocatalytic Applications: A Review.\",\"authors\":\"Chunxiang Zhu, Xihui Wang\",\"doi\":\"10.3390/nano15090682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zinc oxide (ZnO), a cheap, abundant, biocompatible, and wide band gap semiconductor material with easy tunable morphologies and properties, makes it one of the mostly studied metal oxides in the area of materials science, physics, chemistry, biochemistry, and solid-state electronics. Its versatility, easy bandgap engineering with transitional and rare earth metals, as well as the diverse nanomorphology empower ZnO as a promising photocatalyst. The use of ZnO as a functional material is attracting increased attention both for academia and industry, especially under the current energy paradigm shift toward clean and renewable sources. Extensive work has been performed in recent years using ZnO as an active component for different photocatalytic applications. Therefore, a thorough and timely review of the process is necessary. The aim of this review is to provide a general summary of the current state of ZnO nanostructures, synthesis strategies, and modification approaches, with the main application focus on varied photocatalysis applications, serving as an introduction, a reference, and an inspiration for future research.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 9\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073315/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15090682\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15090682","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化锌(ZnO)是一种廉价、丰富、具有生物相容性和宽带隙的半导体材料,具有易于调节的形态和性能,是材料科学、物理、化学、生物化学和固态电子学领域研究最多的金属氧化物之一。它的多功能性,易于与过渡金属和稀土金属进行带隙工程,以及不同的纳米形态使ZnO成为一种有前途的光催化剂。氧化锌作为一种功能材料的使用越来越受到学术界和工业界的关注,特别是在当前能源范式向清洁和可再生能源转变的背景下。近年来,利用氧化锌作为活性组分进行了大量的光催化研究。因此,对该过程进行彻底和及时的审查是必要的。本文综述了氧化锌纳米结构、合成策略和改性方法的研究现状,重点介绍了氧化锌在光催化方面的应用,为今后的研究提供了参考和启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanomaterial ZnO Synthesis and Its Photocatalytic Applications: A Review.

Zinc oxide (ZnO), a cheap, abundant, biocompatible, and wide band gap semiconductor material with easy tunable morphologies and properties, makes it one of the mostly studied metal oxides in the area of materials science, physics, chemistry, biochemistry, and solid-state electronics. Its versatility, easy bandgap engineering with transitional and rare earth metals, as well as the diverse nanomorphology empower ZnO as a promising photocatalyst. The use of ZnO as a functional material is attracting increased attention both for academia and industry, especially under the current energy paradigm shift toward clean and renewable sources. Extensive work has been performed in recent years using ZnO as an active component for different photocatalytic applications. Therefore, a thorough and timely review of the process is necessary. The aim of this review is to provide a general summary of the current state of ZnO nanostructures, synthesis strategies, and modification approaches, with the main application focus on varied photocatalysis applications, serving as an introduction, a reference, and an inspiration for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信