利用mutisseq快速分离小麦品种Yr9并进行星子9104抗持久条锈病的QTL分析。

IF 5.8
Yibo Zhang, Shuo Huang, Yuqing Li, Shuaiwei Cao, Hui Ren, Mingjie Xiang, Haitao Dong, Jiangna Han, Ying Zhao, Xiangxue Zhang, Xunying Yuan, Qilin Wang, Yajun Wang, Yi Ouyang, Zujun Yang, Zhensheng Kang, Shengjie Liu, Jianhui Wu, Qingdong Zeng, Dejun Han
{"title":"利用mutisseq快速分离小麦品种Yr9并进行星子9104抗持久条锈病的QTL分析。","authors":"Yibo Zhang, Shuo Huang, Yuqing Li, Shuaiwei Cao, Hui Ren, Mingjie Xiang, Haitao Dong, Jiangna Han, Ying Zhao, Xiangxue Zhang, Xunying Yuan, Qilin Wang, Yajun Wang, Yi Ouyang, Zujun Yang, Zhensheng Kang, Shengjie Liu, Jianhui Wu, Qingdong Zeng, Dejun Han","doi":"10.1007/s44154-025-00226-9","DOIUrl":null,"url":null,"abstract":"<p><p>The fungus Puccinia striiformis f. sp. tritici (Pst) is the causal agent of wheat stripe rust which constitutes a major limitation to wheat production. Cloning and applying disease-resistant genes are considered as an effective solution. Chinese wheat cultivar Xingzi 9104 (XZ9104) has exhibited durable resistance across multiple environments since its release. Through quantitative trait loci (QTL) analysis, eight QTL were found on chromosome arms 1BS, 1BL, 2AL, 2BL, 3BS, 4BL, 5BL and 7BL. YrXZ identified as 1RS.1BL translocation conferred race-specific all-stage resistance to Pst race CYR23. QYrxz.nwafu-1BL.6 and QYrxz.nwafu-3BS.7 were considered as the adult plant resistance genes Yr29 and Yr30, respectively. Notably, QYrxz.nwafu-2BL.5 accounted for 15.75-47.63% of the phenotypic variation across diverse environments and its pyramiding with Yr29 and Yr30 can confer high level of resistance. Other QTL were environment-dependent with minor effects. To clone the above resistance genes, we created a population of over 2,000 M<sub>5</sub> mutants in XZ9104 using ethylmethane sulfonate (EMS) mutagenesis and screened various types of susceptible mutants. Using the MutIsoseq approach with five mutant lines susceptible to race CYR23, we rapid isolated a candidate gene for YrXZ encoding coiled-coil nucleotide-binding site leucine-rich repeat (CC-NBS-LRR) protein. Integrating cytological analysis, gene-based association analysis, transcriptomic profiling and virus-induced gene silencing (VIGS), we confirmed that the causal gene for YrXZ was indeed Yr9. This study demonstrated that multiple QTL with different effects contributed to the durable resistance in XZ9104. Understanding the molecular mechanisms and pathways involved in plant defense can inform future strategies for deploying resistance gene and engineering of genetic resistance against evolving diseases.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"5 1","pages":"29"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044127/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid isolation of Yr9 via MutIsoSeq and QTL analysis of durable stripe rust resistance in wheat cultivar Xingzi 9104.\",\"authors\":\"Yibo Zhang, Shuo Huang, Yuqing Li, Shuaiwei Cao, Hui Ren, Mingjie Xiang, Haitao Dong, Jiangna Han, Ying Zhao, Xiangxue Zhang, Xunying Yuan, Qilin Wang, Yajun Wang, Yi Ouyang, Zujun Yang, Zhensheng Kang, Shengjie Liu, Jianhui Wu, Qingdong Zeng, Dejun Han\",\"doi\":\"10.1007/s44154-025-00226-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fungus Puccinia striiformis f. sp. tritici (Pst) is the causal agent of wheat stripe rust which constitutes a major limitation to wheat production. Cloning and applying disease-resistant genes are considered as an effective solution. Chinese wheat cultivar Xingzi 9104 (XZ9104) has exhibited durable resistance across multiple environments since its release. Through quantitative trait loci (QTL) analysis, eight QTL were found on chromosome arms 1BS, 1BL, 2AL, 2BL, 3BS, 4BL, 5BL and 7BL. YrXZ identified as 1RS.1BL translocation conferred race-specific all-stage resistance to Pst race CYR23. QYrxz.nwafu-1BL.6 and QYrxz.nwafu-3BS.7 were considered as the adult plant resistance genes Yr29 and Yr30, respectively. Notably, QYrxz.nwafu-2BL.5 accounted for 15.75-47.63% of the phenotypic variation across diverse environments and its pyramiding with Yr29 and Yr30 can confer high level of resistance. Other QTL were environment-dependent with minor effects. To clone the above resistance genes, we created a population of over 2,000 M<sub>5</sub> mutants in XZ9104 using ethylmethane sulfonate (EMS) mutagenesis and screened various types of susceptible mutants. Using the MutIsoseq approach with five mutant lines susceptible to race CYR23, we rapid isolated a candidate gene for YrXZ encoding coiled-coil nucleotide-binding site leucine-rich repeat (CC-NBS-LRR) protein. Integrating cytological analysis, gene-based association analysis, transcriptomic profiling and virus-induced gene silencing (VIGS), we confirmed that the causal gene for YrXZ was indeed Yr9. This study demonstrated that multiple QTL with different effects contributed to the durable resistance in XZ9104. Understanding the molecular mechanisms and pathways involved in plant defense can inform future strategies for deploying resistance gene and engineering of genetic resistance against evolving diseases.</p>\",\"PeriodicalId\":74874,\"journal\":{\"name\":\"Stress biology\",\"volume\":\"5 1\",\"pages\":\"29\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12044127/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stress biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44154-025-00226-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-025-00226-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小麦条锈病是小麦条锈病的主要病原菌,是制约小麦生产的主要病原菌。克隆和应用抗病基因被认为是有效的解决办法。我国小麦品种星子9104 (XZ9104)自投放以来,在多种环境中表现出持久的抗性。通过数量性状位点(QTL)分析,在染色体臂1BS、1BL、2AL、2BL、3BS、4BL、5BL和7BL上发现8个QTL。YrXZ被识别为1RS。1BL易位赋予了对Pst小种CYR23的全阶段特异性抗性。QYrxz.nwafu-1BL。6和QYrxz.nwafu-3BS。其中,Yr29和Yr30分别为成虫抗性基因。值得注意的是,QYrxz.nwafu-2BL。5在不同环境下占表型变异的15.75-47.63%,与Yr29和Yr30的金字塔化可以获得高水平的抗性。其他QTL与环境相关,影响较小。为了克隆上述抗性基因,我们在XZ9104上利用甲烷磺酸乙酯(EMS)诱变技术建立了2000多个M5突变体群体,并筛选了不同类型的易感突变体。利用对CYR23易感的5个突变系的mutisseq方法,我们快速分离出了YrXZ编码卷曲卷曲核苷酸结合位点富亮氨酸重复序列(CC-NBS-LRR)蛋白的候选基因。综合细胞学分析、基因关联分析、转录组学分析和病毒诱导基因沉默(VIGS),我们证实YrXZ的致病基因确实是Yr9。本研究表明,XZ9104的持久抗性是由多个不同作用的QTL促成的。了解植物防御的分子机制和途径可以为未来抗病基因的部署和抗病基因工程提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid isolation of Yr9 via MutIsoSeq and QTL analysis of durable stripe rust resistance in wheat cultivar Xingzi 9104.

The fungus Puccinia striiformis f. sp. tritici (Pst) is the causal agent of wheat stripe rust which constitutes a major limitation to wheat production. Cloning and applying disease-resistant genes are considered as an effective solution. Chinese wheat cultivar Xingzi 9104 (XZ9104) has exhibited durable resistance across multiple environments since its release. Through quantitative trait loci (QTL) analysis, eight QTL were found on chromosome arms 1BS, 1BL, 2AL, 2BL, 3BS, 4BL, 5BL and 7BL. YrXZ identified as 1RS.1BL translocation conferred race-specific all-stage resistance to Pst race CYR23. QYrxz.nwafu-1BL.6 and QYrxz.nwafu-3BS.7 were considered as the adult plant resistance genes Yr29 and Yr30, respectively. Notably, QYrxz.nwafu-2BL.5 accounted for 15.75-47.63% of the phenotypic variation across diverse environments and its pyramiding with Yr29 and Yr30 can confer high level of resistance. Other QTL were environment-dependent with minor effects. To clone the above resistance genes, we created a population of over 2,000 M5 mutants in XZ9104 using ethylmethane sulfonate (EMS) mutagenesis and screened various types of susceptible mutants. Using the MutIsoseq approach with five mutant lines susceptible to race CYR23, we rapid isolated a candidate gene for YrXZ encoding coiled-coil nucleotide-binding site leucine-rich repeat (CC-NBS-LRR) protein. Integrating cytological analysis, gene-based association analysis, transcriptomic profiling and virus-induced gene silencing (VIGS), we confirmed that the causal gene for YrXZ was indeed Yr9. This study demonstrated that multiple QTL with different effects contributed to the durable resistance in XZ9104. Understanding the molecular mechanisms and pathways involved in plant defense can inform future strategies for deploying resistance gene and engineering of genetic resistance against evolving diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信