{"title":"生成式人工智能与肌肉骨骼保健。","authors":"Kyle N Kunze","doi":"10.1177/15563316251335334","DOIUrl":null,"url":null,"abstract":"<p><p>Generative artificial intelligence (AI) comprises a class of AI models that generate synthetic outputs based on learning acquired from a dataset that trained the model. This means that they can create entirely new outputs that resemble real-world data despite not being explicitly instructed to do so during training. Regarding technological capabilities, computing power, and data availability, generative AI has given rise to more advanced and versatile models including diffusion and large language models that hold promise in healthcare. In musculoskeletal healthcare, generative AI applications may involve the enhancement of images, generation of audio and video, automation of clinical documentation and administrative tasks, use of surgical planning aids, augmentation of treatment decisions, and personalization of patient communication. Limitations of the use of generative AI in healthcare include hallucinations, model bias, ethical considerations during clinical use, knowledge gaps, and lack of transparency. This review introduces critical concepts of generative AI, presents clinical applications relevant to musculoskeletal healthcare that are in development, and highlights limitations preventing deployment in clinical settings.</p>","PeriodicalId":35357,"journal":{"name":"Hss Journal","volume":" ","pages":"15563316251335334"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033169/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generative Artificial Intelligence and Musculoskeletal Health Care.\",\"authors\":\"Kyle N Kunze\",\"doi\":\"10.1177/15563316251335334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Generative artificial intelligence (AI) comprises a class of AI models that generate synthetic outputs based on learning acquired from a dataset that trained the model. This means that they can create entirely new outputs that resemble real-world data despite not being explicitly instructed to do so during training. Regarding technological capabilities, computing power, and data availability, generative AI has given rise to more advanced and versatile models including diffusion and large language models that hold promise in healthcare. In musculoskeletal healthcare, generative AI applications may involve the enhancement of images, generation of audio and video, automation of clinical documentation and administrative tasks, use of surgical planning aids, augmentation of treatment decisions, and personalization of patient communication. Limitations of the use of generative AI in healthcare include hallucinations, model bias, ethical considerations during clinical use, knowledge gaps, and lack of transparency. This review introduces critical concepts of generative AI, presents clinical applications relevant to musculoskeletal healthcare that are in development, and highlights limitations preventing deployment in clinical settings.</p>\",\"PeriodicalId\":35357,\"journal\":{\"name\":\"Hss Journal\",\"volume\":\" \",\"pages\":\"15563316251335334\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12033169/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hss Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15563316251335334\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hss Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15563316251335334","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Generative Artificial Intelligence and Musculoskeletal Health Care.
Generative artificial intelligence (AI) comprises a class of AI models that generate synthetic outputs based on learning acquired from a dataset that trained the model. This means that they can create entirely new outputs that resemble real-world data despite not being explicitly instructed to do so during training. Regarding technological capabilities, computing power, and data availability, generative AI has given rise to more advanced and versatile models including diffusion and large language models that hold promise in healthcare. In musculoskeletal healthcare, generative AI applications may involve the enhancement of images, generation of audio and video, automation of clinical documentation and administrative tasks, use of surgical planning aids, augmentation of treatment decisions, and personalization of patient communication. Limitations of the use of generative AI in healthcare include hallucinations, model bias, ethical considerations during clinical use, knowledge gaps, and lack of transparency. This review introduces critical concepts of generative AI, presents clinical applications relevant to musculoskeletal healthcare that are in development, and highlights limitations preventing deployment in clinical settings.
期刊介绍:
The HSS Journal is the Musculoskeletal Journal of Hospital for Special Surgery. The aim of the HSS Journal is to promote cutting edge research, clinical pathways, and state-of-the-art techniques that inform and facilitate the continuing education of the orthopaedic and musculoskeletal communities. HSS Journal publishes articles that offer contributions to the advancement of the knowledge of musculoskeletal diseases and encourages submission of manuscripts from all musculoskeletal disciplines.