Kunwei Li, Huan Cao, Hao Huang, Songyuan Tang, Han Wang, Qing Yang, Yonghe Hu, Jie Weng, Xin Chen
{"title":"含铜生物材料治疗骨相关疾病的研究进展。","authors":"Kunwei Li, Huan Cao, Hao Huang, Songyuan Tang, Han Wang, Qing Yang, Yonghe Hu, Jie Weng, Xin Chen","doi":"10.1093/rb/rbaf014","DOIUrl":null,"url":null,"abstract":"<p><p>Bone-related diseases pose a major challenge in contemporary society, with significant implications for both health and economy. Copper, a vital trace metal in the human body, facilitates a wide range of physiological processes by being crucial for the function of proteins and enzymes. Numerous studies have validated copper's role in bone regeneration and protection, particularly in the development and expansion of bone collagen. Owing to copper's numerous biological advantages, an increasing number of scientists are endeavoring to fabricate novel, multifunctional copper-containing biomaterials as an effective treatment strategy for bone disorders. This review integrates the current understanding regarding the biological functions of copper from the molecular and cellular levels, highlighting its potential for bone regeneration and protection. It also reviews the novel fabrication techniques for developing copper-containing biomaterials, including copper-modified metals, calcium phosphate bioceramics, bioactive glasses, bone cements, hydrogels and biocomposites. The fabrication strategies and various applications of these biomaterials in addressing conditions such as fractures, bone tumors, osteomyelitis, osteoporosis, osteoarthritis and osteonecrosis are carefully elaborated. Moreover, the long-term safety and toxicity assessments of these biomaterials are also presented. Finally, the review addresses current challenges and future prospects, in particular the regulatory challenges and safety issues faced in clinical implementation, with the aim of guiding the strategic design of multifunctional copper-based biomaterials to effectively manage bone-related diseases.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf014"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011366/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in copper-containing biomaterials for managing bone-related diseases.\",\"authors\":\"Kunwei Li, Huan Cao, Hao Huang, Songyuan Tang, Han Wang, Qing Yang, Yonghe Hu, Jie Weng, Xin Chen\",\"doi\":\"10.1093/rb/rbaf014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone-related diseases pose a major challenge in contemporary society, with significant implications for both health and economy. Copper, a vital trace metal in the human body, facilitates a wide range of physiological processes by being crucial for the function of proteins and enzymes. Numerous studies have validated copper's role in bone regeneration and protection, particularly in the development and expansion of bone collagen. Owing to copper's numerous biological advantages, an increasing number of scientists are endeavoring to fabricate novel, multifunctional copper-containing biomaterials as an effective treatment strategy for bone disorders. This review integrates the current understanding regarding the biological functions of copper from the molecular and cellular levels, highlighting its potential for bone regeneration and protection. It also reviews the novel fabrication techniques for developing copper-containing biomaterials, including copper-modified metals, calcium phosphate bioceramics, bioactive glasses, bone cements, hydrogels and biocomposites. The fabrication strategies and various applications of these biomaterials in addressing conditions such as fractures, bone tumors, osteomyelitis, osteoporosis, osteoarthritis and osteonecrosis are carefully elaborated. Moreover, the long-term safety and toxicity assessments of these biomaterials are also presented. Finally, the review addresses current challenges and future prospects, in particular the regulatory challenges and safety issues faced in clinical implementation, with the aim of guiding the strategic design of multifunctional copper-based biomaterials to effectively manage bone-related diseases.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"12 \",\"pages\":\"rbaf014\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011366/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbaf014\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf014","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Advances in copper-containing biomaterials for managing bone-related diseases.
Bone-related diseases pose a major challenge in contemporary society, with significant implications for both health and economy. Copper, a vital trace metal in the human body, facilitates a wide range of physiological processes by being crucial for the function of proteins and enzymes. Numerous studies have validated copper's role in bone regeneration and protection, particularly in the development and expansion of bone collagen. Owing to copper's numerous biological advantages, an increasing number of scientists are endeavoring to fabricate novel, multifunctional copper-containing biomaterials as an effective treatment strategy for bone disorders. This review integrates the current understanding regarding the biological functions of copper from the molecular and cellular levels, highlighting its potential for bone regeneration and protection. It also reviews the novel fabrication techniques for developing copper-containing biomaterials, including copper-modified metals, calcium phosphate bioceramics, bioactive glasses, bone cements, hydrogels and biocomposites. The fabrication strategies and various applications of these biomaterials in addressing conditions such as fractures, bone tumors, osteomyelitis, osteoporosis, osteoarthritis and osteonecrosis are carefully elaborated. Moreover, the long-term safety and toxicity assessments of these biomaterials are also presented. Finally, the review addresses current challenges and future prospects, in particular the regulatory challenges and safety issues faced in clinical implementation, with the aim of guiding the strategic design of multifunctional copper-based biomaterials to effectively manage bone-related diseases.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.