ptm -曼巴:一个具有双向门控曼巴块的ptm感知蛋白质语言模型。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-05-01 Epub Date: 2025-04-10 DOI:10.1038/s41592-025-02656-9
Fred Zhangzhi Peng, Chentong Wang, Tong Chen, Benjamin Schussheim, Sophia Vincoff, Pranam Chatterjee
{"title":"ptm -曼巴:一个具有双向门控曼巴块的ptm感知蛋白质语言模型。","authors":"Fred Zhangzhi Peng, Chentong Wang, Tong Chen, Benjamin Schussheim, Sophia Vincoff, Pranam Chatterjee","doi":"10.1038/s41592-025-02656-9","DOIUrl":null,"url":null,"abstract":"<p><p>Current protein language models (LMs) accurately encode protein properties but have yet to represent post-translational modifications (PTMs), which are crucial for proteomic diversity and influence protein structure, function and interactions. To address this gap, we develop PTM-Mamba, a PTM-aware protein LM that integrates PTM tokens using bidirectional Mamba blocks fused with ESM-2 protein LM embeddings via a newly developed gating mechanism. PTM-Mamba uniquely models both wild-type and PTM sequences, enabling downstream tasks such as disease association and druggability prediction, PTM effect prediction on protein-protein interactions and zero-shot PTM discovery. In total, our work establishes PTM-Mamba as a foundational tool for PTM-aware protein modeling and design.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"945-949"},"PeriodicalIF":36.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074982/pdf/","citationCount":"0","resultStr":"{\"title\":\"PTM-Mamba: a PTM-aware protein language model with bidirectional gated Mamba blocks.\",\"authors\":\"Fred Zhangzhi Peng, Chentong Wang, Tong Chen, Benjamin Schussheim, Sophia Vincoff, Pranam Chatterjee\",\"doi\":\"10.1038/s41592-025-02656-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current protein language models (LMs) accurately encode protein properties but have yet to represent post-translational modifications (PTMs), which are crucial for proteomic diversity and influence protein structure, function and interactions. To address this gap, we develop PTM-Mamba, a PTM-aware protein LM that integrates PTM tokens using bidirectional Mamba blocks fused with ESM-2 protein LM embeddings via a newly developed gating mechanism. PTM-Mamba uniquely models both wild-type and PTM sequences, enabling downstream tasks such as disease association and druggability prediction, PTM effect prediction on protein-protein interactions and zero-shot PTM discovery. In total, our work establishes PTM-Mamba as a foundational tool for PTM-aware protein modeling and design.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\"22 5\",\"pages\":\"945-949\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074982/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02656-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02656-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

目前的蛋白质语言模型(LMs)可以准确地编码蛋白质特性,但尚未表征翻译后修饰(PTMs),而PTMs对蛋白质组学多样性和影响蛋白质结构、功能和相互作用至关重要。为了解决这一问题,我们开发了PTM-Mamba,这是一种PTM感知蛋白LM,通过一种新开发的门机制,使用双向曼巴块与ESM-2蛋白LM嵌入融合,集成了PTM令牌。PTM- mamba独特地模拟了野生型和PTM序列,实现了下游任务,如疾病关联和药物预测、PTM对蛋白质相互作用的影响预测和零概率PTM发现。总之,我们的工作建立了PTM-Mamba作为ptm感知蛋白质建模和设计的基础工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PTM-Mamba: a PTM-aware protein language model with bidirectional gated Mamba blocks.

Current protein language models (LMs) accurately encode protein properties but have yet to represent post-translational modifications (PTMs), which are crucial for proteomic diversity and influence protein structure, function and interactions. To address this gap, we develop PTM-Mamba, a PTM-aware protein LM that integrates PTM tokens using bidirectional Mamba blocks fused with ESM-2 protein LM embeddings via a newly developed gating mechanism. PTM-Mamba uniquely models both wild-type and PTM sequences, enabling downstream tasks such as disease association and druggability prediction, PTM effect prediction on protein-protein interactions and zero-shot PTM discovery. In total, our work establishes PTM-Mamba as a foundational tool for PTM-aware protein modeling and design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信