Shuai Gao, Zheng Liu, Wei Zeng, Xi Liu, Fanjun Zhang, Dimeng Wu, Yunbing Wang
{"title":"用稳定的具有抗血栓特性的亲水性涂层敷料抗菌铂负载聚氨酯材料。","authors":"Shuai Gao, Zheng Liu, Wei Zeng, Xi Liu, Fanjun Zhang, Dimeng Wu, Yunbing Wang","doi":"10.1088/1748-605X/add6fa","DOIUrl":null,"url":null,"abstract":"<p><p>Thrombus formation and infection resulting from blood contact with medical materials represent significant clinical complications characterized by a mutually reinforcing relationship between the two phenomena. Consequently, the development of hydrophilic coatings that simultaneously release bactericidal agents and exhibit passive antithrombotic properties is of paramount importance. In this work, we employed a straightforward, easily executable, and amenable to scale-up strategy to synthesize an antibacterial polyurethane matrix containing platinum complex, followed by the construction of a phosphorylcholine-based hydrophilic coating on its surface via surface-initiated polymerization. The antibacterial efficacy arises from the sustained release mechanism of platinum complex ions, while the phosphorylcholine coating exhibits remarkable antithrombotic characteristics. These two functionalities operate both independently and synergistically within the material to provide robust antibacterial and antithrombotic performance.<i>In vitro</i>and<i>in vivo</i>experiments validated the effectiveness of this composite material in inhibiting bacterial growth and preventing thrombus formation. Furthermore, histological analysis along with immunological detection confirmed that the coating material has excellent biocompatibility coupled with anti-inflammatory effects. Therefore, the developed innovative coating with efficient antibacterial and antithrombotic effects shows great promise as an effective strategy for mitigating risks associated with infections and thrombus formation in clinical settings involving blood-contacting medical devices and related implants.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dressing antibacterial platinum loaded polyurethane materials by a stable hydrophilic coating with robust antithrombotic properties.\",\"authors\":\"Shuai Gao, Zheng Liu, Wei Zeng, Xi Liu, Fanjun Zhang, Dimeng Wu, Yunbing Wang\",\"doi\":\"10.1088/1748-605X/add6fa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thrombus formation and infection resulting from blood contact with medical materials represent significant clinical complications characterized by a mutually reinforcing relationship between the two phenomena. Consequently, the development of hydrophilic coatings that simultaneously release bactericidal agents and exhibit passive antithrombotic properties is of paramount importance. In this work, we employed a straightforward, easily executable, and amenable to scale-up strategy to synthesize an antibacterial polyurethane matrix containing platinum complex, followed by the construction of a phosphorylcholine-based hydrophilic coating on its surface via surface-initiated polymerization. The antibacterial efficacy arises from the sustained release mechanism of platinum complex ions, while the phosphorylcholine coating exhibits remarkable antithrombotic characteristics. These two functionalities operate both independently and synergistically within the material to provide robust antibacterial and antithrombotic performance.<i>In vitro</i>and<i>in vivo</i>experiments validated the effectiveness of this composite material in inhibiting bacterial growth and preventing thrombus formation. Furthermore, histological analysis along with immunological detection confirmed that the coating material has excellent biocompatibility coupled with anti-inflammatory effects. Therefore, the developed innovative coating with efficient antibacterial and antithrombotic effects shows great promise as an effective strategy for mitigating risks associated with infections and thrombus formation in clinical settings involving blood-contacting medical devices and related implants.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/add6fa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/add6fa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dressing antibacterial platinum loaded polyurethane materials by a stable hydrophilic coating with robust antithrombotic properties.
Thrombus formation and infection resulting from blood contact with medical materials represent significant clinical complications characterized by a mutually reinforcing relationship between the two phenomena. Consequently, the development of hydrophilic coatings that simultaneously release bactericidal agents and exhibit passive antithrombotic properties is of paramount importance. In this work, we employed a straightforward, easily executable, and amenable to scale-up strategy to synthesize an antibacterial polyurethane matrix containing platinum complex, followed by the construction of a phosphorylcholine-based hydrophilic coating on its surface via surface-initiated polymerization. The antibacterial efficacy arises from the sustained release mechanism of platinum complex ions, while the phosphorylcholine coating exhibits remarkable antithrombotic characteristics. These two functionalities operate both independently and synergistically within the material to provide robust antibacterial and antithrombotic performance.In vitroandin vivoexperiments validated the effectiveness of this composite material in inhibiting bacterial growth and preventing thrombus formation. Furthermore, histological analysis along with immunological detection confirmed that the coating material has excellent biocompatibility coupled with anti-inflammatory effects. Therefore, the developed innovative coating with efficient antibacterial and antithrombotic effects shows great promise as an effective strategy for mitigating risks associated with infections and thrombus formation in clinical settings involving blood-contacting medical devices and related implants.