在胚胎期和1岁大的美洲短吻鳄,即密西西比短吻鳄,心脏线粒体功能不会因缺氧孵育或急性缺氧而改变。

IF 1.7 3区 生物学 Q4 PHYSIOLOGY
Janna Crossley, Jessica D Rippamonti, Dane A Crossley, Edward M Dzialowski
{"title":"在胚胎期和1岁大的美洲短吻鳄,即密西西比短吻鳄,心脏线粒体功能不会因缺氧孵育或急性缺氧而改变。","authors":"Janna Crossley, Jessica D Rippamonti, Dane A Crossley, Edward M Dzialowski","doi":"10.1007/s00360-025-01618-z","DOIUrl":null,"url":null,"abstract":"<p><p>Hypoxic conditions naturally occur in nests of egg laying reptiles including the American alligator, Alligator mississippiensis. The effects of developmental hypoxia have been delineated in several studies of this species, with changes in cardiovascular function persisting into juvenile life. However, several questions regarding the effects of developmental hypoxia remain. In this study we designed a series of experiments to quantify the effects of developmental hypoxia on permeabilized cardiac muscle fiber mitochondrial respiration, reactive oxygen species production, and response to acute anoxia in American alligators. Alligator eggs were incubated in 21% O<sub>2</sub> (normoxia) or 10% O<sub>2</sub> (hypoxia) at 30 °C beginning on day 14 of a 72-day incubation period through hatching. Animals were studied at two ages, at 90% of incubation and 1-year post hatching. Mitochondrial respiration and ROS production under leak and oxidative phosphorylation states were measured in permeabilized cardiac muscle fibers with high-resolution respirometry coupled with fluorometry. To examine the response of mitochondria to acute anoxia and subsequent reoxygenation, permeabilized cardiac muscle fibers were exposed to 20 min of anoxia, followed by reoxygenation during measurement of mitochondria respiration and ROS production. Hypoxic incubation resulted in a decrease in embryos mass which was maintained through the first year of juvenile life. Hypoxic incubation had no effect on cardiac mitochondria respiration or ROS production at either 90% of incubation or 1-year post hatching. After exposure to anoxia for 20 min, the rate of mitochondria respiration did not differ between the pre-anoxia respiration levels for all animals tested. There was no change in ROS production observed upon reoxygenation of the permeabilized cardiac muscle. Our results suggest that hypoxic incubation has little influence on cardiac myocyte mitochondrial physiology in the developing alligator and the cardiac mitochondria are resistant to acute bouts of anoxic exposure.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiac mitochondria function in embryonic and 1-year old American alligators, Alligator mississippiensis, is not altered by hypoxic incubation or an acute anoxic challenge.\",\"authors\":\"Janna Crossley, Jessica D Rippamonti, Dane A Crossley, Edward M Dzialowski\",\"doi\":\"10.1007/s00360-025-01618-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hypoxic conditions naturally occur in nests of egg laying reptiles including the American alligator, Alligator mississippiensis. The effects of developmental hypoxia have been delineated in several studies of this species, with changes in cardiovascular function persisting into juvenile life. However, several questions regarding the effects of developmental hypoxia remain. In this study we designed a series of experiments to quantify the effects of developmental hypoxia on permeabilized cardiac muscle fiber mitochondrial respiration, reactive oxygen species production, and response to acute anoxia in American alligators. Alligator eggs were incubated in 21% O<sub>2</sub> (normoxia) or 10% O<sub>2</sub> (hypoxia) at 30 °C beginning on day 14 of a 72-day incubation period through hatching. Animals were studied at two ages, at 90% of incubation and 1-year post hatching. Mitochondrial respiration and ROS production under leak and oxidative phosphorylation states were measured in permeabilized cardiac muscle fibers with high-resolution respirometry coupled with fluorometry. To examine the response of mitochondria to acute anoxia and subsequent reoxygenation, permeabilized cardiac muscle fibers were exposed to 20 min of anoxia, followed by reoxygenation during measurement of mitochondria respiration and ROS production. Hypoxic incubation resulted in a decrease in embryos mass which was maintained through the first year of juvenile life. Hypoxic incubation had no effect on cardiac mitochondria respiration or ROS production at either 90% of incubation or 1-year post hatching. After exposure to anoxia for 20 min, the rate of mitochondria respiration did not differ between the pre-anoxia respiration levels for all animals tested. There was no change in ROS production observed upon reoxygenation of the permeabilized cardiac muscle. Our results suggest that hypoxic incubation has little influence on cardiac myocyte mitochondrial physiology in the developing alligator and the cardiac mitochondria are resistant to acute bouts of anoxic exposure.</p>\",\"PeriodicalId\":56033,\"journal\":{\"name\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00360-025-01618-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-025-01618-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

低氧条件自然发生在产卵爬行动物的巢穴中,包括美洲鳄,密西西比鳄。发育缺氧的影响已经在该物种的几项研究中被描绘出来,心血管功能的变化持续到幼年。然而,关于发育性缺氧影响的几个问题仍然存在。在这项研究中,我们设计了一系列实验来量化发育缺氧对美洲短吻鳄渗透性心肌纤维、线粒体呼吸、活性氧产生和急性缺氧反应的影响。从孵化期72天的第14天开始,将鳄鱼卵在30°C 21% O2(常氧)或10% O2(低氧)条件下孵育。动物在两个年龄,90%孵化和1年孵化后进行研究。在泄漏和氧化磷酸化状态下,采用高分辨率呼吸仪联合荧光法测量渗透心肌纤维的线粒体呼吸和ROS生成。为了检测线粒体对急性缺氧和随后的再氧化的反应,将通透性心肌纤维暴露于缺氧20分钟,然后在测量线粒体呼吸和ROS产生期间进行再氧化。低氧孵育导致胚胎质量的减少,这种减少一直维持到幼鱼生命的第一年。低氧孵育在孵育90%或孵育后1年对心肌线粒体呼吸或ROS产生均无影响。暴露于缺氧20分钟后,线粒体呼吸速率在所有动物缺氧前呼吸水平之间没有差异。渗透性心肌再氧化后ROS的产生没有变化。我们的研究结果表明,缺氧孵育对发育中的短吻鳄心肌细胞线粒体生理的影响很小,心脏线粒体对急性缺氧暴露具有抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardiac mitochondria function in embryonic and 1-year old American alligators, Alligator mississippiensis, is not altered by hypoxic incubation or an acute anoxic challenge.

Hypoxic conditions naturally occur in nests of egg laying reptiles including the American alligator, Alligator mississippiensis. The effects of developmental hypoxia have been delineated in several studies of this species, with changes in cardiovascular function persisting into juvenile life. However, several questions regarding the effects of developmental hypoxia remain. In this study we designed a series of experiments to quantify the effects of developmental hypoxia on permeabilized cardiac muscle fiber mitochondrial respiration, reactive oxygen species production, and response to acute anoxia in American alligators. Alligator eggs were incubated in 21% O2 (normoxia) or 10% O2 (hypoxia) at 30 °C beginning on day 14 of a 72-day incubation period through hatching. Animals were studied at two ages, at 90% of incubation and 1-year post hatching. Mitochondrial respiration and ROS production under leak and oxidative phosphorylation states were measured in permeabilized cardiac muscle fibers with high-resolution respirometry coupled with fluorometry. To examine the response of mitochondria to acute anoxia and subsequent reoxygenation, permeabilized cardiac muscle fibers were exposed to 20 min of anoxia, followed by reoxygenation during measurement of mitochondria respiration and ROS production. Hypoxic incubation resulted in a decrease in embryos mass which was maintained through the first year of juvenile life. Hypoxic incubation had no effect on cardiac mitochondria respiration or ROS production at either 90% of incubation or 1-year post hatching. After exposure to anoxia for 20 min, the rate of mitochondria respiration did not differ between the pre-anoxia respiration levels for all animals tested. There was no change in ROS production observed upon reoxygenation of the permeabilized cardiac muscle. Our results suggest that hypoxic incubation has little influence on cardiac myocyte mitochondrial physiology in the developing alligator and the cardiac mitochondria are resistant to acute bouts of anoxic exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信