FusionXNet:通过集成卷积和Transformer架构增强基于脑电图的癫痫发作预测。

Wenqian Feng, Yanna Zhao, Hao Peng, Chenxi Nie, Hongbin Lv, Shuai Wang, Hailing Feng
{"title":"FusionXNet:通过集成卷积和Transformer架构增强基于脑电图的癫痫发作预测。","authors":"Wenqian Feng, Yanna Zhao, Hao Peng, Chenxi Nie, Hongbin Lv, Shuai Wang, Hailing Feng","doi":"10.1088/1741-2552/adce33","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Effective seizure prediction can reduce patient burden, improve clinical treatment accuracy, and lower healthcare costs. However, existing deep learning-based seizure prediction methods primarily rely on single models, which have limitations in feature extraction. This study aims to develop a hybrid model that integrates the advantages of convolutional neural networks (CNNs) and Transformer to enhance seizure prediction performance.<i>Approach</i>. We propose FusionXNet, a hybrid model inspired by CNNs and Transformer architectures, for seizure prediction. Specifically, we design a token synthesis unit to extract local features using convolution operations and capture global electroencephalography (EEG) representations via attention mechanisms. By merging local and global features extracted from the EEG segments, FusionXNet enhances feature representations, which are subsequently fed into a classifier for final seizure prediction.<i>Main results</i>. We evaluate the model on the publicly available Boston Children's Hospital and the Massachusetts Institute of Technology dataset, conducting segment-based and event-based experiments in both patient-specific and cross-patient settings. In event-based patient-specific experiments, FusionXNet achieves a sensitivity of 97.602% and a false positive rate (FPR) of 0.059 h<sup>-1</sup>. The results demonstrate that the proposed model effectively predicts seizures with high sensitivity and a low FPR, outperforming existing methods.<i>Significance</i>. The proposed FusionXNet model provides a robust and efficient approach for seizure prediction by leveraging both local and global feature extraction. The high sensitivity and low FPR indicate its potential for real-world clinical applications, improving patient management and reducing healthcare costs.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":"22 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FusionXNet: enhancing EEG-based seizure prediction with integrated convolutional and Transformer architectures.\",\"authors\":\"Wenqian Feng, Yanna Zhao, Hao Peng, Chenxi Nie, Hongbin Lv, Shuai Wang, Hailing Feng\",\"doi\":\"10.1088/1741-2552/adce33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Effective seizure prediction can reduce patient burden, improve clinical treatment accuracy, and lower healthcare costs. However, existing deep learning-based seizure prediction methods primarily rely on single models, which have limitations in feature extraction. This study aims to develop a hybrid model that integrates the advantages of convolutional neural networks (CNNs) and Transformer to enhance seizure prediction performance.<i>Approach</i>. We propose FusionXNet, a hybrid model inspired by CNNs and Transformer architectures, for seizure prediction. Specifically, we design a token synthesis unit to extract local features using convolution operations and capture global electroencephalography (EEG) representations via attention mechanisms. By merging local and global features extracted from the EEG segments, FusionXNet enhances feature representations, which are subsequently fed into a classifier for final seizure prediction.<i>Main results</i>. We evaluate the model on the publicly available Boston Children's Hospital and the Massachusetts Institute of Technology dataset, conducting segment-based and event-based experiments in both patient-specific and cross-patient settings. In event-based patient-specific experiments, FusionXNet achieves a sensitivity of 97.602% and a false positive rate (FPR) of 0.059 h<sup>-1</sup>. The results demonstrate that the proposed model effectively predicts seizures with high sensitivity and a low FPR, outperforming existing methods.<i>Significance</i>. The proposed FusionXNet model provides a robust and efficient approach for seizure prediction by leveraging both local and global feature extraction. The high sensitivity and low FPR indicate its potential for real-world clinical applications, improving patient management and reducing healthcare costs.</p>\",\"PeriodicalId\":94096,\"journal\":{\"name\":\"Journal of neural engineering\",\"volume\":\"22 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neural engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-2552/adce33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adce33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标。有效的癫痫发作预测可减轻患者负担,提高临床治疗准确性,降低医疗成本。然而,现有的基于深度学习的癫痫发作预测方法主要依赖于单一模型,在特征提取方面存在局限性。本研究旨在开发一种混合模型,整合卷积神经网络(cnn)和Transformer的优势,以提高癫痫发作预测性能。我们提出了FusionXNet,一个受cnn和Transformer架构启发的混合模型,用于癫痫发作预测。具体来说,我们设计了一个令牌合成单元,使用卷积操作提取局部特征,并通过注意机制捕获全局脑电图(EEG)表征。通过合并从EEG片段中提取的局部和全局特征,FusionXNet增强了特征表示,随后将其输入分类器以进行最终的癫痫发作预测。主要的结果。我们在公开可用的波士顿儿童医院和麻省理工学院数据集上评估该模型,在特定患者和跨患者设置中进行基于片段和基于事件的实验。在基于事件的患者特异性实验中,FusionXNet的灵敏度为97.602%,假阳性率(FPR)为0.059 h-1。结果表明,该模型预测癫痫发作的灵敏度高,FPR低,优于现有方法。提出的FusionXNet模型通过利用局部和全局特征提取,为癫痫发作预测提供了一种强大而有效的方法。高灵敏度和低FPR表明其在现实世界的临床应用,改善患者管理和降低医疗成本的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FusionXNet: enhancing EEG-based seizure prediction with integrated convolutional and Transformer architectures.

Objective. Effective seizure prediction can reduce patient burden, improve clinical treatment accuracy, and lower healthcare costs. However, existing deep learning-based seizure prediction methods primarily rely on single models, which have limitations in feature extraction. This study aims to develop a hybrid model that integrates the advantages of convolutional neural networks (CNNs) and Transformer to enhance seizure prediction performance.Approach. We propose FusionXNet, a hybrid model inspired by CNNs and Transformer architectures, for seizure prediction. Specifically, we design a token synthesis unit to extract local features using convolution operations and capture global electroencephalography (EEG) representations via attention mechanisms. By merging local and global features extracted from the EEG segments, FusionXNet enhances feature representations, which are subsequently fed into a classifier for final seizure prediction.Main results. We evaluate the model on the publicly available Boston Children's Hospital and the Massachusetts Institute of Technology dataset, conducting segment-based and event-based experiments in both patient-specific and cross-patient settings. In event-based patient-specific experiments, FusionXNet achieves a sensitivity of 97.602% and a false positive rate (FPR) of 0.059 h-1. The results demonstrate that the proposed model effectively predicts seizures with high sensitivity and a low FPR, outperforming existing methods.Significance. The proposed FusionXNet model provides a robust and efficient approach for seizure prediction by leveraging both local and global feature extraction. The high sensitivity and low FPR indicate its potential for real-world clinical applications, improving patient management and reducing healthcare costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信